203 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			203 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZGESC2 solves a system of linear equations using the LU factorization with complete pivoting computed by sgetc2.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZGESC2 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgesc2.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgesc2.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgesc2.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZGESC2( N, A, LDA, RHS, IPIV, JPIV, SCALE )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            LDA, N
 | |
| *       DOUBLE PRECISION   SCALE
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * ), JPIV( * )
 | |
| *       COMPLEX*16         A( LDA, * ), RHS( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZGESC2 solves a system of linear equations
 | |
| *>
 | |
| *>           A * X = scale* RHS
 | |
| *>
 | |
| *> with a general N-by-N matrix A using the LU factorization with
 | |
| *> complete pivoting computed by ZGETC2.
 | |
| *>
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA, N)
 | |
| *>          On entry, the  LU part of the factorization of the n-by-n
 | |
| *>          matrix A computed by ZGETC2:  A = P * L * U * Q
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1, N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] RHS
 | |
| *> \verbatim
 | |
| *>          RHS is COMPLEX*16 array, dimension N.
 | |
| *>          On entry, the right hand side vector b.
 | |
| *>          On exit, the solution vector X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N).
 | |
| *>          The pivot indices; for 1 <= i <= N, row i of the
 | |
| *>          matrix has been interchanged with row IPIV(i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JPIV
 | |
| *> \verbatim
 | |
| *>          JPIV is INTEGER array, dimension (N).
 | |
| *>          The pivot indices; for 1 <= j <= N, column j of the
 | |
| *>          matrix has been interchanged with column JPIV(j).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SCALE
 | |
| *> \verbatim
 | |
| *>          SCALE is DOUBLE PRECISION
 | |
| *>           On exit, SCALE contains the scale factor. SCALE is chosen
 | |
| *>           0 <= SCALE <= 1 to prevent overflow in the solution.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date November 2017
 | |
| *
 | |
| *> \ingroup complex16GEauxiliary
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
 | |
| *>     Umea University, S-901 87 Umea, Sweden.
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZGESC2( N, A, LDA, RHS, IPIV, JPIV, SCALE )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.8.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2017
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            LDA, N
 | |
|       DOUBLE PRECISION   SCALE
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * ), JPIV( * )
 | |
|       COMPLEX*16         A( LDA, * ), RHS( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE, TWO
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, J
 | |
|       DOUBLE PRECISION   BIGNUM, EPS, SMLNUM
 | |
|       COMPLEX*16         TEMP
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZLASWP, ZSCAL, DLABAD
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            IZAMAX
 | |
|       DOUBLE PRECISION   DLAMCH
 | |
|       EXTERNAL           IZAMAX, DLAMCH
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DBLE, DCMPLX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Set constant to control overflow
 | |
| *
 | |
|       EPS = DLAMCH( 'P' )
 | |
|       SMLNUM = DLAMCH( 'S' ) / EPS
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       CALL DLABAD( SMLNUM, BIGNUM )
 | |
| *
 | |
| *     Apply permutations IPIV to RHS
 | |
| *
 | |
|       CALL ZLASWP( 1, RHS, LDA, 1, N-1, IPIV, 1 )
 | |
| *
 | |
| *     Solve for L part
 | |
| *
 | |
|       DO 20 I = 1, N - 1
 | |
|          DO 10 J = I + 1, N
 | |
|             RHS( J ) = RHS( J ) - A( J, I )*RHS( I )
 | |
|    10    CONTINUE
 | |
|    20 CONTINUE
 | |
| *
 | |
| *     Solve for U part
 | |
| *
 | |
|       SCALE = ONE
 | |
| *
 | |
| *     Check for scaling
 | |
| *
 | |
|       I = IZAMAX( N, RHS, 1 )
 | |
|       IF( TWO*SMLNUM*ABS( RHS( I ) ).GT.ABS( A( N, N ) ) ) THEN
 | |
|          TEMP = DCMPLX( ONE / TWO, ZERO ) / ABS( RHS( I ) )
 | |
|          CALL ZSCAL( N, TEMP, RHS( 1 ), 1 )
 | |
|          SCALE = SCALE*DBLE( TEMP )
 | |
|       END IF
 | |
|       DO 40 I = N, 1, -1
 | |
|          TEMP = DCMPLX( ONE, ZERO ) / A( I, I )
 | |
|          RHS( I ) = RHS( I )*TEMP
 | |
|          DO 30 J = I + 1, N
 | |
|             RHS( I ) = RHS( I ) - RHS( J )*( A( I, J )*TEMP )
 | |
|    30    CONTINUE
 | |
|    40 CONTINUE
 | |
| *
 | |
| *     Apply permutations JPIV to the solution (RHS)
 | |
| *
 | |
|       CALL ZLASWP( 1, RHS, LDA, 1, N-1, JPIV, -1 )
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZGESC2
 | |
| *
 | |
|       END
 |