206 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			206 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZGEQR2P + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeqr2p.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeqr2p.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeqr2p.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZGEQR2P( M, N, A, LDA, TAU, WORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZGEQR2P computes a QR factorization of a complex m-by-n matrix A:
 | |
| *>
 | |
| *>    A = Q * ( R ),
 | |
| *>            ( 0 )
 | |
| *>
 | |
| *> where:
 | |
| *>
 | |
| *>    Q is a m-by-m orthogonal matrix;
 | |
| *>    R is an upper-triangular n-by-n matrix with nonnegative diagonal
 | |
| *>    entries;
 | |
| *>    0 is a (m-n)-by-n zero matrix, if m > n.
 | |
| *>
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA,N)
 | |
| *>          On entry, the m by n matrix A.
 | |
| *>          On exit, the elements on and above the diagonal of the array
 | |
| *>          contain the min(m,n) by n upper trapezoidal matrix R (R is
 | |
| *>          upper triangular if m >= n). The diagonal entries of R
 | |
| *>          are real and nonnegative; the elements below the diagonal,
 | |
| *>          with the array TAU, represent the unitary matrix Q as a
 | |
| *>          product of elementary reflectors (see Further Details).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is COMPLEX*16 array, dimension (min(M,N))
 | |
| *>          The scalar factors of the elementary reflectors (see Further
 | |
| *>          Details).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>          < 0: if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date November 2019
 | |
| *
 | |
| *> \ingroup complex16GEcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The matrix Q is represented as a product of elementary reflectors
 | |
| *>
 | |
| *>     Q = H(1) H(2) . . . H(k), where k = min(m,n).
 | |
| *>
 | |
| *>  Each H(i) has the form
 | |
| *>
 | |
| *>     H(i) = I - tau * v * v**H
 | |
| *>
 | |
| *>  where tau is a complex scalar, and v is a complex vector with
 | |
| *>  v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
 | |
| *>  and tau in TAU(i).
 | |
| *>
 | |
| *> See Lapack Working Note 203 for details
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZGEQR2P( M, N, A, LDA, TAU, WORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.9.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2019
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX*16         ONE
 | |
|       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, K
 | |
|       COMPLEX*16         ALPHA
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA, ZLARF, ZLARFGP
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          DCONJG, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( M.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -4
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'ZGEQR2P', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       K = MIN( M, N )
 | |
| *
 | |
|       DO 10 I = 1, K
 | |
| *
 | |
| *        Generate elementary reflector H(i) to annihilate A(i+1:m,i)
 | |
| *
 | |
|          CALL ZLARFGP( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1,
 | |
|      $                TAU( I ) )
 | |
|          IF( I.LT.N ) THEN
 | |
| *
 | |
| *           Apply H(i)**H to A(i:m,i+1:n) from the left
 | |
| *
 | |
|             ALPHA = A( I, I )
 | |
|             A( I, I ) = ONE
 | |
|             CALL ZLARF( 'Left', M-I+1, N-I, A( I, I ), 1,
 | |
|      $                  DCONJG( TAU( I ) ), A( I, I+1 ), LDA, WORK )
 | |
|             A( I, I ) = ALPHA
 | |
|          END IF
 | |
|    10 CONTINUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZGEQR2P
 | |
| *
 | |
|       END
 |