290 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			290 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZGEMLQT
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DGEMLQT + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgemlqt.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgemlqt.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgemlqt.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZGEMLQT( SIDE, TRANS, M, N, K, MB, V, LDV, T, LDT,
 | |
| *                          C, LDC, WORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER SIDE, TRANS
 | |
| *       INTEGER   INFO, K, LDV, LDC, M, N, MB, LDT
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION V( LDV, * ), C( LDC, * ), T( LDT, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZGEMLQT overwrites the general real M-by-N matrix C with
 | |
| *>
 | |
| *>                 SIDE = 'L'     SIDE = 'R'
 | |
| *> TRANS = 'N':      Q C            C Q
 | |
| *> TRANS = 'C':   Q**H C            C Q**H
 | |
| *>
 | |
| *> where Q is a complex orthogonal matrix defined as the product of K
 | |
| *> elementary reflectors:
 | |
| *>
 | |
| *>       Q = H(1) H(2) . . . H(K) = I - V T V**H
 | |
| *>
 | |
| *> generated using the compact WY representation as returned by ZGELQT.
 | |
| *>
 | |
| *> Q is of order M if SIDE = 'L' and of order N  if SIDE = 'R'.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] SIDE
 | |
| *> \verbatim
 | |
| *>          SIDE is CHARACTER*1
 | |
| *>          = 'L': apply Q or Q**H from the Left;
 | |
| *>          = 'R': apply Q or Q**H from the Right.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>          = 'N':  No transpose, apply Q;
 | |
| *>          = 'C':  Transpose, apply Q**H.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix C. M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix C. N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *>          The number of elementary reflectors whose product defines
 | |
| *>          the matrix Q.
 | |
| *>          If SIDE = 'L', M >= K >= 0;
 | |
| *>          if SIDE = 'R', N >= K >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] MB
 | |
| *> \verbatim
 | |
| *>          MB is INTEGER
 | |
| *>          The block size used for the storage of T.  K >= MB >= 1.
 | |
| *>          This must be the same value of MB used to generate T
 | |
| *>          in DGELQT.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] V
 | |
| *> \verbatim
 | |
| *>          V is COMPLEX*16 array, dimension
 | |
| *>                               (LDV,M) if SIDE = 'L',
 | |
| *>                               (LDV,N) if SIDE = 'R'
 | |
| *>          The i-th row must contain the vector which defines the
 | |
| *>          elementary reflector H(i), for i = 1,2,...,k, as returned by
 | |
| *>          DGELQT in the first K rows of its array argument A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDV
 | |
| *> \verbatim
 | |
| *>          LDV is INTEGER
 | |
| *>          The leading dimension of the array V. LDV >= max(1,K).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] T
 | |
| *> \verbatim
 | |
| *>          T is COMPLEX*16 array, dimension (LDT,K)
 | |
| *>          The upper triangular factors of the block reflectors
 | |
| *>          as returned by DGELQT, stored as a MB-by-K matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDT
 | |
| *> \verbatim
 | |
| *>          LDT is INTEGER
 | |
| *>          The leading dimension of the array T.  LDT >= MB.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] C
 | |
| *> \verbatim
 | |
| *>          C is COMPLEX*16 array, dimension (LDC,N)
 | |
| *>          On entry, the M-by-N matrix C.
 | |
| *>          On exit, C is overwritten by Q C, Q**H C, C Q**H or C Q.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDC
 | |
| *> \verbatim
 | |
| *>          LDC is INTEGER
 | |
| *>          The leading dimension of the array C. LDC >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 array. The dimension of
 | |
| *>          WORK is N*MB if SIDE = 'L', or  M*MB if SIDE = 'R'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date November 2017
 | |
| *
 | |
| *> \ingroup doubleGEcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZGEMLQT( SIDE, TRANS, M, N, K, MB, V, LDV, T, LDT,
 | |
|      $                   C, LDC, WORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.8.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2017
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER SIDE, TRANS
 | |
|       INTEGER   INFO, K, LDV, LDC, M, N, MB, LDT
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX*16 V( LDV, * ), C( LDC, * ), T( LDT, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LEFT, RIGHT, TRAN, NOTRAN
 | |
|       INTEGER            I, IB, LDWORK, KF
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA, ZLARFB
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     .. Test the input arguments ..
 | |
| *
 | |
|       INFO   = 0
 | |
|       LEFT   = LSAME( SIDE,  'L' )
 | |
|       RIGHT  = LSAME( SIDE,  'R' )
 | |
|       TRAN   = LSAME( TRANS, 'C' )
 | |
|       NOTRAN = LSAME( TRANS, 'N' )
 | |
| *
 | |
|       IF( LEFT ) THEN
 | |
|          LDWORK = MAX( 1, N )
 | |
|       ELSE IF ( RIGHT ) THEN
 | |
|          LDWORK = MAX( 1, M )
 | |
|       END IF
 | |
|       IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( M.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( K.LT.0) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( MB.LT.1 .OR. (MB.GT.K .AND. K.GT.0)) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDV.LT.MAX( 1, K ) ) THEN
 | |
|           INFO = -8
 | |
|       ELSE IF( LDT.LT.MB ) THEN
 | |
|          INFO = -10
 | |
|       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -12
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'ZGEMLQT', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     .. Quick return if possible ..
 | |
| *
 | |
|       IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) RETURN
 | |
| *
 | |
|       IF( LEFT .AND. NOTRAN ) THEN
 | |
| *
 | |
|          DO I = 1, K, MB
 | |
|             IB = MIN( MB, K-I+1 )
 | |
|             CALL ZLARFB( 'L', 'C', 'F', 'R', M-I+1, N, IB,
 | |
|      $                   V( I, I ), LDV, T( 1, I ), LDT,
 | |
|      $                   C( I, 1 ), LDC, WORK, LDWORK )
 | |
|          END DO
 | |
| *
 | |
|       ELSE IF( RIGHT .AND. TRAN ) THEN
 | |
| *
 | |
|          DO I = 1, K, MB
 | |
|             IB = MIN( MB, K-I+1 )
 | |
|             CALL ZLARFB( 'R', 'N', 'F', 'R', M, N-I+1, IB,
 | |
|      $                   V( I, I ), LDV, T( 1, I ), LDT,
 | |
|      $                   C( 1, I ), LDC, WORK, LDWORK )
 | |
|          END DO
 | |
| *
 | |
|       ELSE IF( LEFT .AND. TRAN ) THEN
 | |
| *
 | |
|          KF = ((K-1)/MB)*MB+1
 | |
|          DO I = KF, 1, -MB
 | |
|             IB = MIN( MB, K-I+1 )
 | |
|             CALL ZLARFB( 'L', 'N', 'F', 'R', M-I+1, N, IB,
 | |
|      $                   V( I, I ), LDV, T( 1, I ), LDT,
 | |
|      $                   C( I, 1 ), LDC, WORK, LDWORK )
 | |
|          END DO
 | |
| *
 | |
|       ELSE IF( RIGHT .AND. NOTRAN ) THEN
 | |
| *
 | |
|          KF = ((K-1)/MB)*MB+1
 | |
|          DO I = KF, 1, -MB
 | |
|             IB = MIN( MB, K-I+1 )
 | |
|             CALL ZLARFB( 'R', 'C', 'F', 'R', M, N-I+1, IB,
 | |
|      $                   V( I, I ), LDV, T( 1, I ), LDT,
 | |
|      $                   C( 1, I ), LDC, WORK, LDWORK )
 | |
|          END DO
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZGEMLQT
 | |
| *
 | |
|       END
 |