356 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			356 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> SSYEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices</b>
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SSYEVD + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssyevd.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssyevd.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssyevd.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK,
 | |
| *                          LIWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBZ, UPLO
 | |
| *       INTEGER            INFO, LDA, LIWORK, LWORK, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IWORK( * )
 | |
| *       REAL               A( LDA, * ), W( * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SSYEVD computes all eigenvalues and, optionally, eigenvectors of a
 | |
| *> real symmetric matrix A. If eigenvectors are desired, it uses a
 | |
| *> divide and conquer algorithm.
 | |
| *>
 | |
| *> The divide and conquer algorithm makes very mild assumptions about
 | |
| *> floating point arithmetic. It will work on machines with a guard
 | |
| *> digit in add/subtract, or on those binary machines without guard
 | |
| *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
 | |
| *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
 | |
| *> without guard digits, but we know of none.
 | |
| *>
 | |
| *> Because of large use of BLAS of level 3, SSYEVD needs N**2 more
 | |
| *> workspace than SSYEVX.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBZ
 | |
| *> \verbatim
 | |
| *>          JOBZ is CHARACTER*1
 | |
| *>          = 'N':  Compute eigenvalues only;
 | |
| *>          = 'V':  Compute eigenvalues and eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  Upper triangle of A is stored;
 | |
| *>          = 'L':  Lower triangle of A is stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA, N)
 | |
| *>          On entry, the symmetric matrix A.  If UPLO = 'U', the
 | |
| *>          leading N-by-N upper triangular part of A contains the
 | |
| *>          upper triangular part of the matrix A.  If UPLO = 'L',
 | |
| *>          the leading N-by-N lower triangular part of A contains
 | |
| *>          the lower triangular part of the matrix A.
 | |
| *>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
 | |
| *>          orthonormal eigenvectors of the matrix A.
 | |
| *>          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
 | |
| *>          or the upper triangle (if UPLO='U') of A, including the
 | |
| *>          diagonal, is destroyed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] W
 | |
| *> \verbatim
 | |
| *>          W is REAL array, dimension (N)
 | |
| *>          If INFO = 0, the eigenvalues in ascending order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array,
 | |
| *>                                         dimension (LWORK)
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.
 | |
| *>          If N <= 1,               LWORK must be at least 1.
 | |
| *>          If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.
 | |
| *>          If JOBZ = 'V' and N > 1, LWORK must be at least
 | |
| *>                                                1 + 6*N + 2*N**2.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal sizes of the WORK and IWORK
 | |
| *>          arrays, returns these values as the first entries of the WORK
 | |
| *>          and IWORK arrays, and no error message related to LWORK or
 | |
| *>          LIWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
 | |
| *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LIWORK
 | |
| *> \verbatim
 | |
| *>          LIWORK is INTEGER
 | |
| *>          The dimension of the array IWORK.
 | |
| *>          If N <= 1,                LIWORK must be at least 1.
 | |
| *>          If JOBZ  = 'N' and N > 1, LIWORK must be at least 1.
 | |
| *>          If JOBZ  = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
 | |
| *>
 | |
| *>          If LIWORK = -1, then a workspace query is assumed; the
 | |
| *>          routine only calculates the optimal sizes of the WORK and
 | |
| *>          IWORK arrays, returns these values as the first entries of
 | |
| *>          the WORK and IWORK arrays, and no error message related to
 | |
| *>          LWORK or LIWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  if INFO = i and JOBZ = 'N', then the algorithm failed
 | |
| *>                to converge; i off-diagonal elements of an intermediate
 | |
| *>                tridiagonal form did not converge to zero;
 | |
| *>                if INFO = i and JOBZ = 'V', then the algorithm failed
 | |
| *>                to compute an eigenvalue while working on the submatrix
 | |
| *>                lying in rows and columns INFO/(N+1) through
 | |
| *>                mod(INFO,N+1).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup realSYeigen
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *> Jeff Rutter, Computer Science Division, University of California
 | |
| *> at Berkeley, USA \n
 | |
| *>  Modified by Francoise Tisseur, University of Tennessee \n
 | |
| *>  Modified description of INFO. Sven, 16 Feb 05. \n
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK,
 | |
|      $                   LIWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBZ, UPLO
 | |
|       INTEGER            INFO, LDA, LIWORK, LWORK, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IWORK( * )
 | |
|       REAL               A( LDA, * ), W( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
| *
 | |
|       LOGICAL            LOWER, LQUERY, WANTZ
 | |
|       INTEGER            IINFO, INDE, INDTAU, INDWK2, INDWRK, ISCALE,
 | |
|      $                   LIOPT, LIWMIN, LLWORK, LLWRK2, LOPT, LWMIN
 | |
|       REAL               ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
 | |
|      $                   SMLNUM
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ILAENV
 | |
|       REAL               SLAMCH, SLANSY
 | |
|       EXTERNAL           ILAENV, LSAME, SLAMCH, SLANSY
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SLACPY, SLASCL, SORMTR, SSCAL, SSTEDC, SSTERF,
 | |
|      $                   SSYTRD, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       WANTZ = LSAME( JOBZ, 'V' )
 | |
|       LOWER = LSAME( UPLO, 'L' )
 | |
|       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -5
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          IF( N.LE.1 ) THEN
 | |
|             LIWMIN = 1
 | |
|             LWMIN = 1
 | |
|             LOPT = LWMIN
 | |
|             LIOPT = LIWMIN
 | |
|          ELSE
 | |
|             IF( WANTZ ) THEN
 | |
|                LIWMIN = 3 + 5*N
 | |
|                LWMIN = 1 + 6*N + 2*N**2
 | |
|             ELSE
 | |
|                LIWMIN = 1
 | |
|                LWMIN = 2*N + 1
 | |
|             END IF
 | |
|             LOPT = MAX( LWMIN, 2*N +
 | |
|      $                  ILAENV( 1, 'SSYTRD', UPLO, N, -1, -1, -1 ) )
 | |
|             LIOPT = LIWMIN
 | |
|          END IF
 | |
|          WORK( 1 ) = LOPT
 | |
|          IWORK( 1 ) = LIOPT
 | |
| *
 | |
|          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -8
 | |
|          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -10
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SSYEVD', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       IF( N.EQ.1 ) THEN
 | |
|          W( 1 ) = A( 1, 1 )
 | |
|          IF( WANTZ )
 | |
|      $      A( 1, 1 ) = ONE
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Get machine constants.
 | |
| *
 | |
|       SAFMIN = SLAMCH( 'Safe minimum' )
 | |
|       EPS = SLAMCH( 'Precision' )
 | |
|       SMLNUM = SAFMIN / EPS
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       RMIN = SQRT( SMLNUM )
 | |
|       RMAX = SQRT( BIGNUM )
 | |
| *
 | |
| *     Scale matrix to allowable range, if necessary.
 | |
| *
 | |
|       ANRM = SLANSY( 'M', UPLO, N, A, LDA, WORK )
 | |
|       ISCALE = 0
 | |
|       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
 | |
|          ISCALE = 1
 | |
|          SIGMA = RMIN / ANRM
 | |
|       ELSE IF( ANRM.GT.RMAX ) THEN
 | |
|          ISCALE = 1
 | |
|          SIGMA = RMAX / ANRM
 | |
|       END IF
 | |
|       IF( ISCALE.EQ.1 )
 | |
|      $   CALL SLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
 | |
| *
 | |
| *     Call SSYTRD to reduce symmetric matrix to tridiagonal form.
 | |
| *
 | |
|       INDE = 1
 | |
|       INDTAU = INDE + N
 | |
|       INDWRK = INDTAU + N
 | |
|       LLWORK = LWORK - INDWRK + 1
 | |
|       INDWK2 = INDWRK + N*N
 | |
|       LLWRK2 = LWORK - INDWK2 + 1
 | |
| *
 | |
|       CALL SSYTRD( UPLO, N, A, LDA, W, WORK( INDE ), WORK( INDTAU ),
 | |
|      $             WORK( INDWRK ), LLWORK, IINFO )
 | |
| *
 | |
| *     For eigenvalues only, call SSTERF.  For eigenvectors, first call
 | |
| *     SSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
 | |
| *     tridiagonal matrix, then call SORMTR to multiply it by the
 | |
| *     Householder transformations stored in A.
 | |
| *
 | |
|       IF( .NOT.WANTZ ) THEN
 | |
|          CALL SSTERF( N, W, WORK( INDE ), INFO )
 | |
|       ELSE
 | |
|          CALL SSTEDC( 'I', N, W, WORK( INDE ), WORK( INDWRK ), N,
 | |
|      $                WORK( INDWK2 ), LLWRK2, IWORK, LIWORK, INFO )
 | |
|          CALL SORMTR( 'L', UPLO, 'N', N, N, A, LDA, WORK( INDTAU ),
 | |
|      $                WORK( INDWRK ), N, WORK( INDWK2 ), LLWRK2, IINFO )
 | |
|          CALL SLACPY( 'A', N, N, WORK( INDWRK ), N, A, LDA )
 | |
|       END IF
 | |
| *
 | |
| *     If matrix was scaled, then rescale eigenvalues appropriately.
 | |
| *
 | |
|       IF( ISCALE.EQ.1 )
 | |
|      $   CALL SSCAL( N, ONE / SIGMA, W, 1 )
 | |
| *
 | |
|       WORK( 1 ) = LOPT
 | |
|       IWORK( 1 ) = LIOPT
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SSYEVD
 | |
| *
 | |
|       END
 |