375 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			375 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SORMBR
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SORMBR + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sormbr.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sormbr.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sormbr.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SORMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
 | |
| *                          LDC, WORK, LWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          SIDE, TRANS, VECT
 | |
| *       INTEGER            INFO, K, LDA, LDC, LWORK, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( LDA, * ), C( LDC, * ), TAU( * ),
 | |
| *      $                   WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> If VECT = 'Q', SORMBR overwrites the general real M-by-N matrix C
 | |
| *> with
 | |
| *>                 SIDE = 'L'     SIDE = 'R'
 | |
| *> TRANS = 'N':      Q * C          C * Q
 | |
| *> TRANS = 'T':      Q**T * C       C * Q**T
 | |
| *>
 | |
| *> If VECT = 'P', SORMBR overwrites the general real M-by-N matrix C
 | |
| *> with
 | |
| *>                 SIDE = 'L'     SIDE = 'R'
 | |
| *> TRANS = 'N':      P * C          C * P
 | |
| *> TRANS = 'T':      P**T * C       C * P**T
 | |
| *>
 | |
| *> Here Q and P**T are the orthogonal matrices determined by SGEBRD when
 | |
| *> reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and
 | |
| *> P**T are defined as products of elementary reflectors H(i) and G(i)
 | |
| *> respectively.
 | |
| *>
 | |
| *> Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
 | |
| *> order of the orthogonal matrix Q or P**T that is applied.
 | |
| *>
 | |
| *> If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
 | |
| *> if nq >= k, Q = H(1) H(2) . . . H(k);
 | |
| *> if nq < k, Q = H(1) H(2) . . . H(nq-1).
 | |
| *>
 | |
| *> If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
 | |
| *> if k < nq, P = G(1) G(2) . . . G(k);
 | |
| *> if k >= nq, P = G(1) G(2) . . . G(nq-1).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] VECT
 | |
| *> \verbatim
 | |
| *>          VECT is CHARACTER*1
 | |
| *>          = 'Q': apply Q or Q**T;
 | |
| *>          = 'P': apply P or P**T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SIDE
 | |
| *> \verbatim
 | |
| *>          SIDE is CHARACTER*1
 | |
| *>          = 'L': apply Q, Q**T, P or P**T from the Left;
 | |
| *>          = 'R': apply Q, Q**T, P or P**T from the Right.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>          = 'N':  No transpose, apply Q  or P;
 | |
| *>          = 'T':  Transpose, apply Q**T or P**T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix C. M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix C. N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *>          If VECT = 'Q', the number of columns in the original
 | |
| *>          matrix reduced by SGEBRD.
 | |
| *>          If VECT = 'P', the number of rows in the original
 | |
| *>          matrix reduced by SGEBRD.
 | |
| *>          K >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension
 | |
| *>                                (LDA,min(nq,K)) if VECT = 'Q'
 | |
| *>                                (LDA,nq)        if VECT = 'P'
 | |
| *>          The vectors which define the elementary reflectors H(i) and
 | |
| *>          G(i), whose products determine the matrices Q and P, as
 | |
| *>          returned by SGEBRD.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.
 | |
| *>          If VECT = 'Q', LDA >= max(1,nq);
 | |
| *>          if VECT = 'P', LDA >= max(1,min(nq,K)).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is REAL array, dimension (min(nq,K))
 | |
| *>          TAU(i) must contain the scalar factor of the elementary
 | |
| *>          reflector H(i) or G(i) which determines Q or P, as returned
 | |
| *>          by SGEBRD in the array argument TAUQ or TAUP.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] C
 | |
| *> \verbatim
 | |
| *>          C is REAL array, dimension (LDC,N)
 | |
| *>          On entry, the M-by-N matrix C.
 | |
| *>          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q
 | |
| *>          or P*C or P**T*C or C*P or C*P**T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDC
 | |
| *> \verbatim
 | |
| *>          LDC is INTEGER
 | |
| *>          The leading dimension of the array C. LDC >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.
 | |
| *>          If SIDE = 'L', LWORK >= max(1,N);
 | |
| *>          if SIDE = 'R', LWORK >= max(1,M).
 | |
| *>          For optimum performance LWORK >= N*NB if SIDE = 'L', and
 | |
| *>          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
 | |
| *>          blocksize.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup realOTHERcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SORMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
 | |
|      $                   LDC, WORK, LWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          SIDE, TRANS, VECT
 | |
|       INTEGER            INFO, K, LDA, LDC, LWORK, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * ), C( LDC, * ), TAU( * ),
 | |
|      $                   WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            APPLYQ, LEFT, LQUERY, NOTRAN
 | |
|       CHARACTER          TRANST
 | |
|       INTEGER            I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ILAENV
 | |
|       EXTERNAL           ILAENV, LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SORMLQ, SORMQR, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       INFO = 0
 | |
|       APPLYQ = LSAME( VECT, 'Q' )
 | |
|       LEFT = LSAME( SIDE, 'L' )
 | |
|       NOTRAN = LSAME( TRANS, 'N' )
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
| *
 | |
| *     NQ is the order of Q or P and NW is the minimum dimension of WORK
 | |
| *
 | |
|       IF( LEFT ) THEN
 | |
|          NQ = M
 | |
|          NW = N
 | |
|       ELSE
 | |
|          NQ = N
 | |
|          NW = M
 | |
|       END IF
 | |
|       IF( .NOT.APPLYQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( M.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( K.LT.0 ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( ( APPLYQ .AND. LDA.LT.MAX( 1, NQ ) ) .OR.
 | |
|      $         ( .NOT.APPLYQ .AND. LDA.LT.MAX( 1, MIN( NQ, K ) ) ) )
 | |
|      $          THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -11
 | |
|       ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN
 | |
|          INFO = -13
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          IF( APPLYQ ) THEN
 | |
|             IF( LEFT ) THEN
 | |
|                NB = ILAENV( 1, 'SORMQR', SIDE // TRANS, M-1, N, M-1,
 | |
|      $                      -1 )
 | |
|             ELSE
 | |
|                NB = ILAENV( 1, 'SORMQR', SIDE // TRANS, M, N-1, N-1,
 | |
|      $                      -1 )
 | |
|             END IF
 | |
|          ELSE
 | |
|             IF( LEFT ) THEN
 | |
|                NB = ILAENV( 1, 'SORMLQ', SIDE // TRANS, M-1, N, M-1,
 | |
|      $                      -1 )
 | |
|             ELSE
 | |
|                NB = ILAENV( 1, 'SORMLQ', SIDE // TRANS, M, N-1, N-1,
 | |
|      $                      -1 )
 | |
|             END IF
 | |
|          END IF
 | |
|          LWKOPT = MAX( 1, NW )*NB
 | |
|          WORK( 1 ) = LWKOPT
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SORMBR', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       WORK( 1 ) = 1
 | |
|       IF( M.EQ.0 .OR. N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       IF( APPLYQ ) THEN
 | |
| *
 | |
| *        Apply Q
 | |
| *
 | |
|          IF( NQ.GE.K ) THEN
 | |
| *
 | |
| *           Q was determined by a call to SGEBRD with nq >= k
 | |
| *
 | |
|             CALL SORMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
 | |
|      $                   WORK, LWORK, IINFO )
 | |
|          ELSE IF( NQ.GT.1 ) THEN
 | |
| *
 | |
| *           Q was determined by a call to SGEBRD with nq < k
 | |
| *
 | |
|             IF( LEFT ) THEN
 | |
|                MI = M - 1
 | |
|                NI = N
 | |
|                I1 = 2
 | |
|                I2 = 1
 | |
|             ELSE
 | |
|                MI = M
 | |
|                NI = N - 1
 | |
|                I1 = 1
 | |
|                I2 = 2
 | |
|             END IF
 | |
|             CALL SORMQR( SIDE, TRANS, MI, NI, NQ-1, A( 2, 1 ), LDA, TAU,
 | |
|      $                   C( I1, I2 ), LDC, WORK, LWORK, IINFO )
 | |
|          END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Apply P
 | |
| *
 | |
|          IF( NOTRAN ) THEN
 | |
|             TRANST = 'T'
 | |
|          ELSE
 | |
|             TRANST = 'N'
 | |
|          END IF
 | |
|          IF( NQ.GT.K ) THEN
 | |
| *
 | |
| *           P was determined by a call to SGEBRD with nq > k
 | |
| *
 | |
|             CALL SORMLQ( SIDE, TRANST, M, N, K, A, LDA, TAU, C, LDC,
 | |
|      $                   WORK, LWORK, IINFO )
 | |
|          ELSE IF( NQ.GT.1 ) THEN
 | |
| *
 | |
| *           P was determined by a call to SGEBRD with nq <= k
 | |
| *
 | |
|             IF( LEFT ) THEN
 | |
|                MI = M - 1
 | |
|                NI = N
 | |
|                I1 = 2
 | |
|                I2 = 1
 | |
|             ELSE
 | |
|                MI = M
 | |
|                NI = N - 1
 | |
|                I1 = 1
 | |
|                I2 = 2
 | |
|             END IF
 | |
|             CALL SORMLQ( SIDE, TRANST, MI, NI, NQ-1, A( 1, 2 ), LDA,
 | |
|      $                   TAU, C( I1, I2 ), LDC, WORK, LWORK, IINFO )
 | |
|          END IF
 | |
|       END IF
 | |
|       WORK( 1 ) = LWKOPT
 | |
|       RETURN
 | |
| *
 | |
| *     End of SORMBR
 | |
| *
 | |
|       END
 |