324 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			324 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SLATDF uses the LU factorization of the n-by-n matrix computed by sgetc2 and computes a contribution to the reciprocal Dif-estimate.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SLATDF + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slatdf.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slatdf.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slatdf.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV,
 | |
| *                          JPIV )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            IJOB, LDZ, N
 | |
| *       REAL               RDSCAL, RDSUM
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * ), JPIV( * )
 | |
| *       REAL               RHS( * ), Z( LDZ, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SLATDF uses the LU factorization of the n-by-n matrix Z computed by
 | |
| *> SGETC2 and computes a contribution to the reciprocal Dif-estimate
 | |
| *> by solving Z * x = b for x, and choosing the r.h.s. b such that
 | |
| *> the norm of x is as large as possible. On entry RHS = b holds the
 | |
| *> contribution from earlier solved sub-systems, and on return RHS = x.
 | |
| *>
 | |
| *> The factorization of Z returned by SGETC2 has the form Z = P*L*U*Q,
 | |
| *> where P and Q are permutation matrices. L is lower triangular with
 | |
| *> unit diagonal elements and U is upper triangular.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] IJOB
 | |
| *> \verbatim
 | |
| *>          IJOB is INTEGER
 | |
| *>          IJOB = 2: First compute an approximative null-vector e
 | |
| *>              of Z using SGECON, e is normalized and solve for
 | |
| *>              Zx = +-e - f with the sign giving the greater value
 | |
| *>              of 2-norm(x). About 5 times as expensive as Default.
 | |
| *>          IJOB .ne. 2: Local look ahead strategy where all entries of
 | |
| *>              the r.h.s. b is chosen as either +1 or -1 (Default).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix Z.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] Z
 | |
| *> \verbatim
 | |
| *>          Z is REAL array, dimension (LDZ, N)
 | |
| *>          On entry, the LU part of the factorization of the n-by-n
 | |
| *>          matrix Z computed by SGETC2:  Z = P * L * U * Q
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>          The leading dimension of the array Z.  LDA >= max(1, N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] RHS
 | |
| *> \verbatim
 | |
| *>          RHS is REAL array, dimension N.
 | |
| *>          On entry, RHS contains contributions from other subsystems.
 | |
| *>          On exit, RHS contains the solution of the subsystem with
 | |
| *>          entries according to the value of IJOB (see above).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] RDSUM
 | |
| *> \verbatim
 | |
| *>          RDSUM is REAL
 | |
| *>          On entry, the sum of squares of computed contributions to
 | |
| *>          the Dif-estimate under computation by STGSYL, where the
 | |
| *>          scaling factor RDSCAL (see below) has been factored out.
 | |
| *>          On exit, the corresponding sum of squares updated with the
 | |
| *>          contributions from the current sub-system.
 | |
| *>          If TRANS = 'T' RDSUM is not touched.
 | |
| *>          NOTE: RDSUM only makes sense when STGSY2 is called by STGSYL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] RDSCAL
 | |
| *> \verbatim
 | |
| *>          RDSCAL is REAL
 | |
| *>          On entry, scaling factor used to prevent overflow in RDSUM.
 | |
| *>          On exit, RDSCAL is updated w.r.t. the current contributions
 | |
| *>          in RDSUM.
 | |
| *>          If TRANS = 'T', RDSCAL is not touched.
 | |
| *>          NOTE: RDSCAL only makes sense when STGSY2 is called by
 | |
| *>                STGSYL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N).
 | |
| *>          The pivot indices; for 1 <= i <= N, row i of the
 | |
| *>          matrix has been interchanged with row IPIV(i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JPIV
 | |
| *> \verbatim
 | |
| *>          JPIV is INTEGER array, dimension (N).
 | |
| *>          The pivot indices; for 1 <= j <= N, column j of the
 | |
| *>          matrix has been interchanged with column JPIV(j).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date June 2016
 | |
| *
 | |
| *> \ingroup realOTHERauxiliary
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *>  This routine is a further developed implementation of algorithm
 | |
| *>  BSOLVE in [1] using complete pivoting in the LU factorization.
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
 | |
| *>     Umea University, S-901 87 Umea, Sweden.
 | |
| *
 | |
| *> \par References:
 | |
| *  ================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>
 | |
| *>  [1] Bo Kagstrom and Lars Westin,
 | |
| *>      Generalized Schur Methods with Condition Estimators for
 | |
| *>      Solving the Generalized Sylvester Equation, IEEE Transactions
 | |
| *>      on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751.
 | |
| *>
 | |
| *>  [2] Peter Poromaa,
 | |
| *>      On Efficient and Robust Estimators for the Separation
 | |
| *>      between two Regular Matrix Pairs with Applications in
 | |
| *>      Condition Estimation. Report IMINF-95.05, Departement of
 | |
| *>      Computing Science, Umea University, S-901 87 Umea, Sweden, 1995.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SLATDF( IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV,
 | |
|      $                   JPIV )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     June 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            IJOB, LDZ, N
 | |
|       REAL               RDSCAL, RDSUM
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * ), JPIV( * )
 | |
|       REAL               RHS( * ), Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       INTEGER            MAXDIM
 | |
|       PARAMETER          ( MAXDIM = 8 )
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, INFO, J, K
 | |
|       REAL               BM, BP, PMONE, SMINU, SPLUS, TEMP
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            IWORK( MAXDIM )
 | |
|       REAL               WORK( 4*MAXDIM ), XM( MAXDIM ), XP( MAXDIM )
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SAXPY, SCOPY, SGECON, SGESC2, SLASSQ, SLASWP,
 | |
|      $                   SSCAL
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SASUM, SDOT
 | |
|       EXTERNAL           SASUM, SDOT
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       IF( IJOB.NE.2 ) THEN
 | |
| *
 | |
| *        Apply permutations IPIV to RHS
 | |
| *
 | |
|          CALL SLASWP( 1, RHS, LDZ, 1, N-1, IPIV, 1 )
 | |
| *
 | |
| *        Solve for L-part choosing RHS either to +1 or -1.
 | |
| *
 | |
|          PMONE = -ONE
 | |
| *
 | |
|          DO 10 J = 1, N - 1
 | |
|             BP = RHS( J ) + ONE
 | |
|             BM = RHS( J ) - ONE
 | |
|             SPLUS = ONE
 | |
| *
 | |
| *           Look-ahead for L-part RHS(1:N-1) = + or -1, SPLUS and
 | |
| *           SMIN computed more efficiently than in BSOLVE [1].
 | |
| *
 | |
|             SPLUS = SPLUS + SDOT( N-J, Z( J+1, J ), 1, Z( J+1, J ), 1 )
 | |
|             SMINU = SDOT( N-J, Z( J+1, J ), 1, RHS( J+1 ), 1 )
 | |
|             SPLUS = SPLUS*RHS( J )
 | |
|             IF( SPLUS.GT.SMINU ) THEN
 | |
|                RHS( J ) = BP
 | |
|             ELSE IF( SMINU.GT.SPLUS ) THEN
 | |
|                RHS( J ) = BM
 | |
|             ELSE
 | |
| *
 | |
| *              In this case the updating sums are equal and we can
 | |
| *              choose RHS(J) +1 or -1. The first time this happens
 | |
| *              we choose -1, thereafter +1. This is a simple way to
 | |
| *              get good estimates of matrices like Byers well-known
 | |
| *              example (see [1]). (Not done in BSOLVE.)
 | |
| *
 | |
|                RHS( J ) = RHS( J ) + PMONE
 | |
|                PMONE = ONE
 | |
|             END IF
 | |
| *
 | |
| *           Compute the remaining r.h.s.
 | |
| *
 | |
|             TEMP = -RHS( J )
 | |
|             CALL SAXPY( N-J, TEMP, Z( J+1, J ), 1, RHS( J+1 ), 1 )
 | |
| *
 | |
|    10    CONTINUE
 | |
| *
 | |
| *        Solve for U-part, look-ahead for RHS(N) = +-1. This is not done
 | |
| *        in BSOLVE and will hopefully give us a better estimate because
 | |
| *        any ill-conditioning of the original matrix is transferred to U
 | |
| *        and not to L. U(N, N) is an approximation to sigma_min(LU).
 | |
| *
 | |
|          CALL SCOPY( N-1, RHS, 1, XP, 1 )
 | |
|          XP( N ) = RHS( N ) + ONE
 | |
|          RHS( N ) = RHS( N ) - ONE
 | |
|          SPLUS = ZERO
 | |
|          SMINU = ZERO
 | |
|          DO 30 I = N, 1, -1
 | |
|             TEMP = ONE / Z( I, I )
 | |
|             XP( I ) = XP( I )*TEMP
 | |
|             RHS( I ) = RHS( I )*TEMP
 | |
|             DO 20 K = I + 1, N
 | |
|                XP( I ) = XP( I ) - XP( K )*( Z( I, K )*TEMP )
 | |
|                RHS( I ) = RHS( I ) - RHS( K )*( Z( I, K )*TEMP )
 | |
|    20       CONTINUE
 | |
|             SPLUS = SPLUS + ABS( XP( I ) )
 | |
|             SMINU = SMINU + ABS( RHS( I ) )
 | |
|    30    CONTINUE
 | |
|          IF( SPLUS.GT.SMINU )
 | |
|      $      CALL SCOPY( N, XP, 1, RHS, 1 )
 | |
| *
 | |
| *        Apply the permutations JPIV to the computed solution (RHS)
 | |
| *
 | |
|          CALL SLASWP( 1, RHS, LDZ, 1, N-1, JPIV, -1 )
 | |
| *
 | |
| *        Compute the sum of squares
 | |
| *
 | |
|          CALL SLASSQ( N, RHS, 1, RDSCAL, RDSUM )
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        IJOB = 2, Compute approximate nullvector XM of Z
 | |
| *
 | |
|          CALL SGECON( 'I', N, Z, LDZ, ONE, TEMP, WORK, IWORK, INFO )
 | |
|          CALL SCOPY( N, WORK( N+1 ), 1, XM, 1 )
 | |
| *
 | |
| *        Compute RHS
 | |
| *
 | |
|          CALL SLASWP( 1, XM, LDZ, 1, N-1, IPIV, -1 )
 | |
|          TEMP = ONE / SQRT( SDOT( N, XM, 1, XM, 1 ) )
 | |
|          CALL SSCAL( N, TEMP, XM, 1 )
 | |
|          CALL SCOPY( N, XM, 1, XP, 1 )
 | |
|          CALL SAXPY( N, ONE, RHS, 1, XP, 1 )
 | |
|          CALL SAXPY( N, -ONE, XM, 1, RHS, 1 )
 | |
|          CALL SGESC2( N, Z, LDZ, RHS, IPIV, JPIV, TEMP )
 | |
|          CALL SGESC2( N, Z, LDZ, XP, IPIV, JPIV, TEMP )
 | |
|          IF( SASUM( N, XP, 1 ).GT.SASUM( N, RHS, 1 ) )
 | |
|      $      CALL SCOPY( N, XP, 1, RHS, 1 )
 | |
| *
 | |
| *        Compute the sum of squares
 | |
| *
 | |
|          CALL SLASSQ( N, RHS, 1, RDSCAL, RDSUM )
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SLATDF
 | |
| *
 | |
|       END
 |