162 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			162 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SLARTGS generates a plane rotation designed to introduce a bulge in implicit QR iteration for the bidiagonal SVD problem.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SLARTGS + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slartgs.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slartgs.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slartgs.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SLARTGS( X, Y, SIGMA, CS, SN )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       REAL                    CS, SIGMA, SN, X, Y
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SLARTGS generates a plane rotation designed to introduce a bulge in
 | |
| *> Golub-Reinsch-style implicit QR iteration for the bidiagonal SVD
 | |
| *> problem. X and Y are the top-row entries, and SIGMA is the shift.
 | |
| *> The computed CS and SN define a plane rotation satisfying
 | |
| *>
 | |
| *>    [  CS  SN  ]  .  [ X^2 - SIGMA ]  =  [ R ],
 | |
| *>    [ -SN  CS  ]     [    X * Y    ]     [ 0 ]
 | |
| *>
 | |
| *> with R nonnegative.  If X^2 - SIGMA and X * Y are 0, then the
 | |
| *> rotation is by PI/2.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] X
 | |
| *> \verbatim
 | |
| *>          X is REAL
 | |
| *>          The (1,1) entry of an upper bidiagonal matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] Y
 | |
| *> \verbatim
 | |
| *>          Y is REAL
 | |
| *>          The (1,2) entry of an upper bidiagonal matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SIGMA
 | |
| *> \verbatim
 | |
| *>          SIGMA is REAL
 | |
| *>          The shift.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] CS
 | |
| *> \verbatim
 | |
| *>          CS is REAL
 | |
| *>          The cosine of the rotation.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SN
 | |
| *> \verbatim
 | |
| *>          SN is REAL
 | |
| *>          The sine of the rotation.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date November 2017
 | |
| *
 | |
| *> \ingroup auxOTHERcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SLARTGS( X, Y, SIGMA, CS, SN )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.8.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2017
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       REAL                    CS, SIGMA, SN, X, Y
 | |
| *     ..
 | |
| *
 | |
| *  ===================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL                    NEGONE, ONE, ZERO
 | |
|       PARAMETER          ( NEGONE = -1.0E0, ONE = 1.0E0, ZERO = 0.0E0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       REAL                    R, S, THRESH, W, Z
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SLARTGP
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL                    SLAMCH
 | |
|       EXTERNAL           SLAMCH
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       THRESH = SLAMCH('E')
 | |
| *
 | |
| *     Compute the first column of B**T*B - SIGMA^2*I, up to a scale
 | |
| *     factor.
 | |
| *
 | |
|       IF( (SIGMA .EQ. ZERO .AND. ABS(X) .LT. THRESH) .OR.
 | |
|      $          (ABS(X) .EQ. SIGMA .AND. Y .EQ. ZERO) ) THEN
 | |
|          Z = ZERO
 | |
|          W = ZERO
 | |
|       ELSE IF( SIGMA .EQ. ZERO ) THEN
 | |
|          IF( X .GE. ZERO ) THEN
 | |
|             Z = X
 | |
|             W = Y
 | |
|          ELSE
 | |
|             Z = -X
 | |
|             W = -Y
 | |
|          END IF
 | |
|       ELSE IF( ABS(X) .LT. THRESH ) THEN
 | |
|          Z = -SIGMA*SIGMA
 | |
|          W = ZERO
 | |
|       ELSE
 | |
|          IF( X .GE. ZERO ) THEN
 | |
|             S = ONE
 | |
|          ELSE
 | |
|             S = NEGONE
 | |
|          END IF
 | |
|          Z = S * (ABS(X)-SIGMA) * (S+SIGMA/X)
 | |
|          W = S * Y
 | |
|       END IF
 | |
| *
 | |
| *     Generate the rotation.
 | |
| *     CALL SLARTGP( Z, W, CS, SN, R ) might seem more natural;
 | |
| *     reordering the arguments ensures that if Z = 0 then the rotation
 | |
| *     is by PI/2.
 | |
| *
 | |
|       CALL SLARTGP( W, Z, SN, CS, R )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End SLARTGS
 | |
| *
 | |
|       END
 | |
| 
 |