381 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			381 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular band matrix.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SLANTB + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slantb.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slantb.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slantb.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       REAL             FUNCTION SLANTB( NORM, UPLO, DIAG, N, K, AB,
 | |
| *                        LDAB, WORK )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          DIAG, NORM, UPLO
 | |
| *       INTEGER            K, LDAB, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               AB( LDAB, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SLANTB  returns the value of the one norm,  or the Frobenius norm, or
 | |
| *> the  infinity norm,  or the element of  largest absolute value  of an
 | |
| *> n by n triangular band matrix A,  with ( k + 1 ) diagonals.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \return SLANTB
 | |
| *> \verbatim
 | |
| *>
 | |
| *>    SLANTB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 | |
| *>             (
 | |
| *>             ( norm1(A),         NORM = '1', 'O' or 'o'
 | |
| *>             (
 | |
| *>             ( normI(A),         NORM = 'I' or 'i'
 | |
| *>             (
 | |
| *>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 | |
| *>
 | |
| *> where  norm1  denotes the  one norm of a matrix (maximum column sum),
 | |
| *> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 | |
| *> normF  denotes the  Frobenius norm of a matrix (square root of sum of
 | |
| *> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] NORM
 | |
| *> \verbatim
 | |
| *>          NORM is CHARACTER*1
 | |
| *>          Specifies the value to be returned in SLANTB as described
 | |
| *>          above.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the matrix A is upper or lower triangular.
 | |
| *>          = 'U':  Upper triangular
 | |
| *>          = 'L':  Lower triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DIAG
 | |
| *> \verbatim
 | |
| *>          DIAG is CHARACTER*1
 | |
| *>          Specifies whether or not the matrix A is unit triangular.
 | |
| *>          = 'N':  Non-unit triangular
 | |
| *>          = 'U':  Unit triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.  When N = 0, SLANTB is
 | |
| *>          set to zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *>          The number of super-diagonals of the matrix A if UPLO = 'U',
 | |
| *>          or the number of sub-diagonals of the matrix A if UPLO = 'L'.
 | |
| *>          K >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AB
 | |
| *> \verbatim
 | |
| *>          AB is REAL array, dimension (LDAB,N)
 | |
| *>          The upper or lower triangular band matrix A, stored in the
 | |
| *>          first k+1 rows of AB.  The j-th column of A is stored
 | |
| *>          in the j-th column of the array AB as follows:
 | |
| *>          if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
 | |
| *>          if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).
 | |
| *>          Note that when DIAG = 'U', the elements of the array AB
 | |
| *>          corresponding to the diagonal elements of the matrix A are
 | |
| *>          not referenced, but are assumed to be one.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAB
 | |
| *> \verbatim
 | |
| *>          LDAB is INTEGER
 | |
| *>          The leading dimension of the array AB.  LDAB >= K+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (MAX(1,LWORK)),
 | |
| *>          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
 | |
| *>          referenced.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup realOTHERauxiliary
 | |
| *
 | |
| *  =====================================================================
 | |
|       REAL             FUNCTION SLANTB( NORM, UPLO, DIAG, N, K, AB,
 | |
|      $                 LDAB, WORK )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
|       IMPLICIT NONE
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          DIAG, NORM, UPLO
 | |
|       INTEGER            K, LDAB, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               AB( LDAB, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| * =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            UDIAG
 | |
|       INTEGER            I, J, L
 | |
|       REAL               SUM, VALUE
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       REAL               SSQ( 2 ), COLSSQ( 2 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME, SISNAN
 | |
|       EXTERNAL           LSAME, SISNAN
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SLASSQ, SCOMBSSQ
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       IF( N.EQ.0 ) THEN
 | |
|          VALUE = ZERO
 | |
|       ELSE IF( LSAME( NORM, 'M' ) ) THEN
 | |
| *
 | |
| *        Find max(abs(A(i,j))).
 | |
| *
 | |
|          IF( LSAME( DIAG, 'U' ) ) THEN
 | |
|             VALUE = ONE
 | |
|             IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|                DO 20 J = 1, N
 | |
|                   DO 10 I = MAX( K+2-J, 1 ), K
 | |
|                      SUM = ABS( AB( I, J ) )
 | |
|                      IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
 | |
|    10             CONTINUE
 | |
|    20          CONTINUE
 | |
|             ELSE
 | |
|                DO 40 J = 1, N
 | |
|                   DO 30 I = 2, MIN( N+1-J, K+1 )
 | |
|                      SUM = ABS( AB( I, J ) )
 | |
|                      IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
 | |
|    30             CONTINUE
 | |
|    40          CONTINUE
 | |
|             END IF
 | |
|          ELSE
 | |
|             VALUE = ZERO
 | |
|             IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|                DO 60 J = 1, N
 | |
|                   DO 50 I = MAX( K+2-J, 1 ), K + 1
 | |
|                      SUM = ABS( AB( I, J ) )
 | |
|                      IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
 | |
|    50             CONTINUE
 | |
|    60          CONTINUE
 | |
|             ELSE
 | |
|                DO 80 J = 1, N
 | |
|                   DO 70 I = 1, MIN( N+1-J, K+1 )
 | |
|                      SUM = ABS( AB( I, J ) )
 | |
|                      IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
 | |
|    70             CONTINUE
 | |
|    80          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
 | |
| *
 | |
| *        Find norm1(A).
 | |
| *
 | |
|          VALUE = ZERO
 | |
|          UDIAG = LSAME( DIAG, 'U' )
 | |
|          IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|             DO 110 J = 1, N
 | |
|                IF( UDIAG ) THEN
 | |
|                   SUM = ONE
 | |
|                   DO 90 I = MAX( K+2-J, 1 ), K
 | |
|                      SUM = SUM + ABS( AB( I, J ) )
 | |
|    90             CONTINUE
 | |
|                ELSE
 | |
|                   SUM = ZERO
 | |
|                   DO 100 I = MAX( K+2-J, 1 ), K + 1
 | |
|                      SUM = SUM + ABS( AB( I, J ) )
 | |
|   100             CONTINUE
 | |
|                END IF
 | |
|                IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
 | |
|   110       CONTINUE
 | |
|          ELSE
 | |
|             DO 140 J = 1, N
 | |
|                IF( UDIAG ) THEN
 | |
|                   SUM = ONE
 | |
|                   DO 120 I = 2, MIN( N+1-J, K+1 )
 | |
|                      SUM = SUM + ABS( AB( I, J ) )
 | |
|   120             CONTINUE
 | |
|                ELSE
 | |
|                   SUM = ZERO
 | |
|                   DO 130 I = 1, MIN( N+1-J, K+1 )
 | |
|                      SUM = SUM + ABS( AB( I, J ) )
 | |
|   130             CONTINUE
 | |
|                END IF
 | |
|                IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
 | |
|   140       CONTINUE
 | |
|          END IF
 | |
|       ELSE IF( LSAME( NORM, 'I' ) ) THEN
 | |
| *
 | |
| *        Find normI(A).
 | |
| *
 | |
|          VALUE = ZERO
 | |
|          IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|             IF( LSAME( DIAG, 'U' ) ) THEN
 | |
|                DO 150 I = 1, N
 | |
|                   WORK( I ) = ONE
 | |
|   150          CONTINUE
 | |
|                DO 170 J = 1, N
 | |
|                   L = K + 1 - J
 | |
|                   DO 160 I = MAX( 1, J-K ), J - 1
 | |
|                      WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
 | |
|   160             CONTINUE
 | |
|   170          CONTINUE
 | |
|             ELSE
 | |
|                DO 180 I = 1, N
 | |
|                   WORK( I ) = ZERO
 | |
|   180          CONTINUE
 | |
|                DO 200 J = 1, N
 | |
|                   L = K + 1 - J
 | |
|                   DO 190 I = MAX( 1, J-K ), J
 | |
|                      WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
 | |
|   190             CONTINUE
 | |
|   200          CONTINUE
 | |
|             END IF
 | |
|          ELSE
 | |
|             IF( LSAME( DIAG, 'U' ) ) THEN
 | |
|                DO 210 I = 1, N
 | |
|                   WORK( I ) = ONE
 | |
|   210          CONTINUE
 | |
|                DO 230 J = 1, N
 | |
|                   L = 1 - J
 | |
|                   DO 220 I = J + 1, MIN( N, J+K )
 | |
|                      WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
 | |
|   220             CONTINUE
 | |
|   230          CONTINUE
 | |
|             ELSE
 | |
|                DO 240 I = 1, N
 | |
|                   WORK( I ) = ZERO
 | |
|   240          CONTINUE
 | |
|                DO 260 J = 1, N
 | |
|                   L = 1 - J
 | |
|                   DO 250 I = J, MIN( N, J+K )
 | |
|                      WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
 | |
|   250             CONTINUE
 | |
|   260          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|          DO 270 I = 1, N
 | |
|             SUM = WORK( I )
 | |
|             IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
 | |
|   270    CONTINUE
 | |
|       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
 | |
| *
 | |
| *        Find normF(A).
 | |
| *        SSQ(1) is scale
 | |
| *        SSQ(2) is sum-of-squares
 | |
| *        For better accuracy, sum each column separately.
 | |
| *
 | |
|          IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|             IF( LSAME( DIAG, 'U' ) ) THEN
 | |
|                SSQ( 1 ) = ONE
 | |
|                SSQ( 2 ) = N
 | |
|                IF( K.GT.0 ) THEN
 | |
|                   DO 280 J = 2, N
 | |
|                      COLSSQ( 1 ) = ZERO
 | |
|                      COLSSQ( 2 ) = ONE
 | |
|                      CALL SLASSQ( MIN( J-1, K ),
 | |
|      $                            AB( MAX( K+2-J, 1 ), J ), 1,
 | |
|      $                            COLSSQ( 1 ), COLSSQ( 2 ) )
 | |
|                      CALL SCOMBSSQ( SSQ, COLSSQ )
 | |
|   280             CONTINUE
 | |
|                END IF
 | |
|             ELSE
 | |
|                SSQ( 1 ) = ZERO
 | |
|                SSQ( 2 ) = ONE
 | |
|                DO 290 J = 1, N
 | |
|                   COLSSQ( 1 ) = ZERO
 | |
|                   COLSSQ( 2 ) = ONE
 | |
|                   CALL SLASSQ( MIN( J, K+1 ), AB( MAX( K+2-J, 1 ), J ),
 | |
|      $                         1, COLSSQ( 1 ), COLSSQ( 2 ) )
 | |
|                   CALL SCOMBSSQ( SSQ, COLSSQ )
 | |
|   290          CONTINUE
 | |
|             END IF
 | |
|          ELSE
 | |
|             IF( LSAME( DIAG, 'U' ) ) THEN
 | |
|                SSQ( 1 ) = ONE
 | |
|                SSQ( 2 ) = N
 | |
|                IF( K.GT.0 ) THEN
 | |
|                   DO 300 J = 1, N - 1
 | |
|                      COLSSQ( 1 ) = ZERO
 | |
|                      COLSSQ( 2 ) = ONE
 | |
|                      CALL SLASSQ( MIN( N-J, K ), AB( 2, J ), 1,
 | |
|      $                            COLSSQ( 1 ), COLSSQ( 2 ) )
 | |
|                      CALL SCOMBSSQ( SSQ, COLSSQ )
 | |
|   300             CONTINUE
 | |
|                END IF
 | |
|             ELSE
 | |
|                SSQ( 1 ) = ZERO
 | |
|                SSQ( 2 ) = ONE
 | |
|                DO 310 J = 1, N
 | |
|                   COLSSQ( 1 ) = ZERO
 | |
|                   COLSSQ( 2 ) = ONE
 | |
|                   CALL SLASSQ( MIN( N-J+1, K+1 ), AB( 1, J ), 1,
 | |
|      $                         COLSSQ( 1 ), COLSSQ( 2 ) )
 | |
|                   CALL SCOMBSSQ( SSQ, COLSSQ )
 | |
|   310          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|          VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
 | |
|       END IF
 | |
| *
 | |
|       SLANTB = VALUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of SLANTB
 | |
| *
 | |
|       END
 |