1071 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1071 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static real c_b7 = 1.f;
 | |
| static real c_b8 = 0.f;
 | |
| static integer c__2 = 2;
 | |
| 
 | |
| /* > \brief \b SLALSA computes the SVD of the coefficient matrix in compact form. Used by sgelsd. */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download SLALSA + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slalsa.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slalsa.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slalsa.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE SLALSA( ICOMPQ, SMLSIZ, N, NRHS, B, LDB, BX, LDBX, U, */
 | |
| /*                          LDU, VT, K, DIFL, DIFR, Z, POLES, GIVPTR, */
 | |
| /*                          GIVCOL, LDGCOL, PERM, GIVNUM, C, S, WORK, */
 | |
| /*                          IWORK, INFO ) */
 | |
| 
 | |
| /*       INTEGER            ICOMPQ, INFO, LDB, LDBX, LDGCOL, LDU, N, NRHS, */
 | |
| /*      $                   SMLSIZ */
 | |
| /*       INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ), */
 | |
| /*      $                   K( * ), PERM( LDGCOL, * ) */
 | |
| /*       REAL               B( LDB, * ), BX( LDBX, * ), C( * ), */
 | |
| /*      $                   DIFL( LDU, * ), DIFR( LDU, * ), */
 | |
| /*      $                   GIVNUM( LDU, * ), POLES( LDU, * ), S( * ), */
 | |
| /*      $                   U( LDU, * ), VT( LDU, * ), WORK( * ), */
 | |
| /*      $                   Z( LDU, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > SLALSA is an itermediate step in solving the least squares problem */
 | |
| /* > by computing the SVD of the coefficient matrix in compact form (The */
 | |
| /* > singular vectors are computed as products of simple orthorgonal */
 | |
| /* > matrices.). */
 | |
| /* > */
 | |
| /* > If ICOMPQ = 0, SLALSA applies the inverse of the left singular vector */
 | |
| /* > matrix of an upper bidiagonal matrix to the right hand side; and if */
 | |
| /* > ICOMPQ = 1, SLALSA applies the right singular vector matrix to the */
 | |
| /* > right hand side. The singular vector matrices were generated in */
 | |
| /* > compact form by SLALSA. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] ICOMPQ */
 | |
| /* > \verbatim */
 | |
| /* >          ICOMPQ is INTEGER */
 | |
| /* >         Specifies whether the left or the right singular vector */
 | |
| /* >         matrix is involved. */
 | |
| /* >         = 0: Left singular vector matrix */
 | |
| /* >         = 1: Right singular vector matrix */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] SMLSIZ */
 | |
| /* > \verbatim */
 | |
| /* >          SMLSIZ is INTEGER */
 | |
| /* >         The maximum size of the subproblems at the bottom of the */
 | |
| /* >         computation tree. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >         The row and column dimensions of the upper bidiagonal matrix. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NRHS */
 | |
| /* > \verbatim */
 | |
| /* >          NRHS is INTEGER */
 | |
| /* >         The number of columns of B and BX. NRHS must be at least 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] B */
 | |
| /* > \verbatim */
 | |
| /* >          B is REAL array, dimension ( LDB, NRHS ) */
 | |
| /* >         On input, B contains the right hand sides of the least */
 | |
| /* >         squares problem in rows 1 through M. */
 | |
| /* >         On output, B contains the solution X in rows 1 through N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDB */
 | |
| /* > \verbatim */
 | |
| /* >          LDB is INTEGER */
 | |
| /* >         The leading dimension of B in the calling subprogram. */
 | |
| /* >         LDB must be at least f2cmax(1,MAX( M, N ) ). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] BX */
 | |
| /* > \verbatim */
 | |
| /* >          BX is REAL array, dimension ( LDBX, NRHS ) */
 | |
| /* >         On exit, the result of applying the left or right singular */
 | |
| /* >         vector matrix to B. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDBX */
 | |
| /* > \verbatim */
 | |
| /* >          LDBX is INTEGER */
 | |
| /* >         The leading dimension of BX. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] U */
 | |
| /* > \verbatim */
 | |
| /* >          U is REAL array, dimension ( LDU, SMLSIZ ). */
 | |
| /* >         On entry, U contains the left singular vector matrices of all */
 | |
| /* >         subproblems at the bottom level. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDU */
 | |
| /* > \verbatim */
 | |
| /* >          LDU is INTEGER, LDU = > N. */
 | |
| /* >         The leading dimension of arrays U, VT, DIFL, DIFR, */
 | |
| /* >         POLES, GIVNUM, and Z. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] VT */
 | |
| /* > \verbatim */
 | |
| /* >          VT is REAL array, dimension ( LDU, SMLSIZ+1 ). */
 | |
| /* >         On entry, VT**T contains the right singular vector matrices of */
 | |
| /* >         all subproblems at the bottom level. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] K */
 | |
| /* > \verbatim */
 | |
| /* >          K is INTEGER array, dimension ( N ). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] DIFL */
 | |
| /* > \verbatim */
 | |
| /* >          DIFL is REAL array, dimension ( LDU, NLVL ). */
 | |
| /* >         where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] DIFR */
 | |
| /* > \verbatim */
 | |
| /* >          DIFR is REAL array, dimension ( LDU, 2 * NLVL ). */
 | |
| /* >         On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record */
 | |
| /* >         distances between singular values on the I-th level and */
 | |
| /* >         singular values on the (I -1)-th level, and DIFR(*, 2 * I) */
 | |
| /* >         record the normalizing factors of the right singular vectors */
 | |
| /* >         matrices of subproblems on I-th level. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] Z */
 | |
| /* > \verbatim */
 | |
| /* >          Z is REAL array, dimension ( LDU, NLVL ). */
 | |
| /* >         On entry, Z(1, I) contains the components of the deflation- */
 | |
| /* >         adjusted updating row vector for subproblems on the I-th */
 | |
| /* >         level. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] POLES */
 | |
| /* > \verbatim */
 | |
| /* >          POLES is REAL array, dimension ( LDU, 2 * NLVL ). */
 | |
| /* >         On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old */
 | |
| /* >         singular values involved in the secular equations on the I-th */
 | |
| /* >         level. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] GIVPTR */
 | |
| /* > \verbatim */
 | |
| /* >          GIVPTR is INTEGER array, dimension ( N ). */
 | |
| /* >         On entry, GIVPTR( I ) records the number of Givens */
 | |
| /* >         rotations performed on the I-th problem on the computation */
 | |
| /* >         tree. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] GIVCOL */
 | |
| /* > \verbatim */
 | |
| /* >          GIVCOL is INTEGER array, dimension ( LDGCOL, 2 * NLVL ). */
 | |
| /* >         On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the */
 | |
| /* >         locations of Givens rotations performed on the I-th level on */
 | |
| /* >         the computation tree. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDGCOL */
 | |
| /* > \verbatim */
 | |
| /* >          LDGCOL is INTEGER, LDGCOL = > N. */
 | |
| /* >         The leading dimension of arrays GIVCOL and PERM. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] PERM */
 | |
| /* > \verbatim */
 | |
| /* >          PERM is INTEGER array, dimension ( LDGCOL, NLVL ). */
 | |
| /* >         On entry, PERM(*, I) records permutations done on the I-th */
 | |
| /* >         level of the computation tree. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] GIVNUM */
 | |
| /* > \verbatim */
 | |
| /* >          GIVNUM is REAL array, dimension ( LDU, 2 * NLVL ). */
 | |
| /* >         On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S- */
 | |
| /* >         values of Givens rotations performed on the I-th level on the */
 | |
| /* >         computation tree. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] C */
 | |
| /* > \verbatim */
 | |
| /* >          C is REAL array, dimension ( N ). */
 | |
| /* >         On entry, if the I-th subproblem is not square, */
 | |
| /* >         C( I ) contains the C-value of a Givens rotation related to */
 | |
| /* >         the right null space of the I-th subproblem. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] S */
 | |
| /* > \verbatim */
 | |
| /* >          S is REAL array, dimension ( N ). */
 | |
| /* >         On entry, if the I-th subproblem is not square, */
 | |
| /* >         S( I ) contains the S-value of a Givens rotation related to */
 | |
| /* >         the right null space of the I-th subproblem. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is REAL array, dimension (N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IWORK */
 | |
| /* > \verbatim */
 | |
| /* >          IWORK is INTEGER array, dimension (3*N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit. */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date June 2017 */
 | |
| 
 | |
| /* > \ingroup realOTHERcomputational */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* >     Ming Gu and Ren-Cang Li, Computer Science Division, University of */
 | |
| /* >       California at Berkeley, USA \n */
 | |
| /* >     Osni Marques, LBNL/NERSC, USA \n */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ int slalsa_(integer *icompq, integer *smlsiz, integer *n, 
 | |
| 	integer *nrhs, real *b, integer *ldb, real *bx, integer *ldbx, real *
 | |
| 	u, integer *ldu, real *vt, integer *k, real *difl, real *difr, real *
 | |
| 	z__, real *poles, integer *givptr, integer *givcol, integer *ldgcol, 
 | |
| 	integer *perm, real *givnum, real *c__, real *s, real *work, integer *
 | |
| 	iwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, b_dim1, 
 | |
| 	    b_offset, bx_dim1, bx_offset, difl_dim1, difl_offset, difr_dim1, 
 | |
| 	    difr_offset, givnum_dim1, givnum_offset, poles_dim1, poles_offset,
 | |
| 	     u_dim1, u_offset, vt_dim1, vt_offset, z_dim1, z_offset, i__1, 
 | |
| 	    i__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer nlvl, sqre, i__, j, inode, ndiml;
 | |
|     extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, real *, real *, integer *, real *, integer *, real *, 
 | |
| 	    real *, integer *);
 | |
|     integer ndimr, i1;
 | |
|     extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, 
 | |
| 	    integer *), slals0_(integer *, integer *, integer *, integer *, 
 | |
| 	    integer *, real *, integer *, real *, integer *, integer *, 
 | |
| 	    integer *, integer *, integer *, real *, integer *, real *, real *
 | |
| 	    , real *, real *, integer *, real *, real *, real *, integer *);
 | |
|     integer ic, lf, nd, ll, nl, nr;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), slasdt_(
 | |
| 	    integer *, integer *, integer *, integer *, integer *, integer *, 
 | |
| 	    integer *);
 | |
|     integer im1, nlf, nrf, lvl, ndb1, nlp1, lvl2, nrp1;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.1) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2017 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     b_dim1 = *ldb;
 | |
|     b_offset = 1 + b_dim1 * 1;
 | |
|     b -= b_offset;
 | |
|     bx_dim1 = *ldbx;
 | |
|     bx_offset = 1 + bx_dim1 * 1;
 | |
|     bx -= bx_offset;
 | |
|     givnum_dim1 = *ldu;
 | |
|     givnum_offset = 1 + givnum_dim1 * 1;
 | |
|     givnum -= givnum_offset;
 | |
|     poles_dim1 = *ldu;
 | |
|     poles_offset = 1 + poles_dim1 * 1;
 | |
|     poles -= poles_offset;
 | |
|     z_dim1 = *ldu;
 | |
|     z_offset = 1 + z_dim1 * 1;
 | |
|     z__ -= z_offset;
 | |
|     difr_dim1 = *ldu;
 | |
|     difr_offset = 1 + difr_dim1 * 1;
 | |
|     difr -= difr_offset;
 | |
|     difl_dim1 = *ldu;
 | |
|     difl_offset = 1 + difl_dim1 * 1;
 | |
|     difl -= difl_offset;
 | |
|     vt_dim1 = *ldu;
 | |
|     vt_offset = 1 + vt_dim1 * 1;
 | |
|     vt -= vt_offset;
 | |
|     u_dim1 = *ldu;
 | |
|     u_offset = 1 + u_dim1 * 1;
 | |
|     u -= u_offset;
 | |
|     --k; 
 | |
|     --givptr;
 | |
|     perm_dim1 = *ldgcol;
 | |
|     perm_offset = 1 + perm_dim1 * 1;
 | |
|     perm -= perm_offset;
 | |
|     givcol_dim1 = *ldgcol;
 | |
|     givcol_offset = 1 + givcol_dim1 * 1;
 | |
|     givcol -= givcol_offset;
 | |
|     --c__;
 | |
|     --s;
 | |
|     --work;
 | |
|     --iwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
| 
 | |
|     if (*icompq < 0 || *icompq > 1) {
 | |
| 	*info = -1;
 | |
|     } else if (*smlsiz < 3) {
 | |
| 	*info = -2;
 | |
|     } else if (*n < *smlsiz) {
 | |
| 	*info = -3;
 | |
|     } else if (*nrhs < 1) {
 | |
| 	*info = -4;
 | |
|     } else if (*ldb < *n) {
 | |
| 	*info = -6;
 | |
|     } else if (*ldbx < *n) {
 | |
| 	*info = -8;
 | |
|     } else if (*ldu < *n) {
 | |
| 	*info = -10;
 | |
|     } else if (*ldgcol < *n) {
 | |
| 	*info = -19;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("SLALSA", &i__1, (ftnlen)6);
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
| /*     Book-keeping and  setting up the computation tree. */
 | |
| 
 | |
|     inode = 1;
 | |
|     ndiml = inode + *n;
 | |
|     ndimr = ndiml + *n;
 | |
| 
 | |
|     slasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr], 
 | |
| 	    smlsiz);
 | |
| 
 | |
| /*     The following code applies back the left singular vector factors. */
 | |
| /*     For applying back the right singular vector factors, go to 50. */
 | |
| 
 | |
|     if (*icompq == 1) {
 | |
| 	goto L50;
 | |
|     }
 | |
| 
 | |
| /*     The nodes on the bottom level of the tree were solved */
 | |
| /*     by SLASDQ. The corresponding left and right singular vector */
 | |
| /*     matrices are in explicit form. First apply back the left */
 | |
| /*     singular vector matrices. */
 | |
| 
 | |
|     ndb1 = (nd + 1) / 2;
 | |
|     i__1 = nd;
 | |
|     for (i__ = ndb1; i__ <= i__1; ++i__) {
 | |
| 
 | |
| /*        IC : center row of each node */
 | |
| /*        NL : number of rows of left  subproblem */
 | |
| /*        NR : number of rows of right subproblem */
 | |
| /*        NLF: starting row of the left   subproblem */
 | |
| /*        NRF: starting row of the right  subproblem */
 | |
| 
 | |
| 	i1 = i__ - 1;
 | |
| 	ic = iwork[inode + i1];
 | |
| 	nl = iwork[ndiml + i1];
 | |
| 	nr = iwork[ndimr + i1];
 | |
| 	nlf = ic - nl;
 | |
| 	nrf = ic + 1;
 | |
| 	sgemm_("T", "N", &nl, nrhs, &nl, &c_b7, &u[nlf + u_dim1], ldu, &b[nlf 
 | |
| 		+ b_dim1], ldb, &c_b8, &bx[nlf + bx_dim1], ldbx);
 | |
| 	sgemm_("T", "N", &nr, nrhs, &nr, &c_b7, &u[nrf + u_dim1], ldu, &b[nrf 
 | |
| 		+ b_dim1], ldb, &c_b8, &bx[nrf + bx_dim1], ldbx);
 | |
| /* L10: */
 | |
|     }
 | |
| 
 | |
| /*     Next copy the rows of B that correspond to unchanged rows */
 | |
| /*     in the bidiagonal matrix to BX. */
 | |
| 
 | |
|     i__1 = nd;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	ic = iwork[inode + i__ - 1];
 | |
| 	scopy_(nrhs, &b[ic + b_dim1], ldb, &bx[ic + bx_dim1], ldbx);
 | |
| /* L20: */
 | |
|     }
 | |
| 
 | |
| /*     Finally go through the left singular vector matrices of all */
 | |
| /*     the other subproblems bottom-up on the tree. */
 | |
| 
 | |
|     j = pow_ii(&c__2, &nlvl);
 | |
|     sqre = 0;
 | |
| 
 | |
|     for (lvl = nlvl; lvl >= 1; --lvl) {
 | |
| 	lvl2 = (lvl << 1) - 1;
 | |
| 
 | |
| /*        find the first node LF and last node LL on */
 | |
| /*        the current level LVL */
 | |
| 
 | |
| 	if (lvl == 1) {
 | |
| 	    lf = 1;
 | |
| 	    ll = 1;
 | |
| 	} else {
 | |
| 	    i__1 = lvl - 1;
 | |
| 	    lf = pow_ii(&c__2, &i__1);
 | |
| 	    ll = (lf << 1) - 1;
 | |
| 	}
 | |
| 	i__1 = ll;
 | |
| 	for (i__ = lf; i__ <= i__1; ++i__) {
 | |
| 	    im1 = i__ - 1;
 | |
| 	    ic = iwork[inode + im1];
 | |
| 	    nl = iwork[ndiml + im1];
 | |
| 	    nr = iwork[ndimr + im1];
 | |
| 	    nlf = ic - nl;
 | |
| 	    nrf = ic + 1;
 | |
| 	    --j;
 | |
| 	    slals0_(icompq, &nl, &nr, &sqre, nrhs, &bx[nlf + bx_dim1], ldbx, &
 | |
| 		    b[nlf + b_dim1], ldb, &perm[nlf + lvl * perm_dim1], &
 | |
| 		    givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, &
 | |
| 		    givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 *
 | |
| 		     poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf + 
 | |
| 		    lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[
 | |
| 		    j], &s[j], &work[1], info);
 | |
| /* L30: */
 | |
| 	}
 | |
| /* L40: */
 | |
|     }
 | |
|     goto L90;
 | |
| 
 | |
| /*     ICOMPQ = 1: applying back the right singular vector factors. */
 | |
| 
 | |
| L50:
 | |
| 
 | |
| /*     First now go through the right singular vector matrices of all */
 | |
| /*     the tree nodes top-down. */
 | |
| 
 | |
|     j = 0;
 | |
|     i__1 = nlvl;
 | |
|     for (lvl = 1; lvl <= i__1; ++lvl) {
 | |
| 	lvl2 = (lvl << 1) - 1;
 | |
| 
 | |
| /*        Find the first node LF and last node LL on */
 | |
| /*        the current level LVL. */
 | |
| 
 | |
| 	if (lvl == 1) {
 | |
| 	    lf = 1;
 | |
| 	    ll = 1;
 | |
| 	} else {
 | |
| 	    i__2 = lvl - 1;
 | |
| 	    lf = pow_ii(&c__2, &i__2);
 | |
| 	    ll = (lf << 1) - 1;
 | |
| 	}
 | |
| 	i__2 = lf;
 | |
| 	for (i__ = ll; i__ >= i__2; --i__) {
 | |
| 	    im1 = i__ - 1;
 | |
| 	    ic = iwork[inode + im1];
 | |
| 	    nl = iwork[ndiml + im1];
 | |
| 	    nr = iwork[ndimr + im1];
 | |
| 	    nlf = ic - nl;
 | |
| 	    nrf = ic + 1;
 | |
| 	    if (i__ == ll) {
 | |
| 		sqre = 0;
 | |
| 	    } else {
 | |
| 		sqre = 1;
 | |
| 	    }
 | |
| 	    ++j;
 | |
| 	    slals0_(icompq, &nl, &nr, &sqre, nrhs, &b[nlf + b_dim1], ldb, &bx[
 | |
| 		    nlf + bx_dim1], ldbx, &perm[nlf + lvl * perm_dim1], &
 | |
| 		    givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, &
 | |
| 		    givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 *
 | |
| 		     poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf + 
 | |
| 		    lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[
 | |
| 		    j], &s[j], &work[1], info);
 | |
| /* L60: */
 | |
| 	}
 | |
| /* L70: */
 | |
|     }
 | |
| 
 | |
| /*     The nodes on the bottom level of the tree were solved */
 | |
| /*     by SLASDQ. The corresponding right singular vector */
 | |
| /*     matrices are in explicit form. Apply them back. */
 | |
| 
 | |
|     ndb1 = (nd + 1) / 2;
 | |
|     i__1 = nd;
 | |
|     for (i__ = ndb1; i__ <= i__1; ++i__) {
 | |
| 	i1 = i__ - 1;
 | |
| 	ic = iwork[inode + i1];
 | |
| 	nl = iwork[ndiml + i1];
 | |
| 	nr = iwork[ndimr + i1];
 | |
| 	nlp1 = nl + 1;
 | |
| 	if (i__ == nd) {
 | |
| 	    nrp1 = nr;
 | |
| 	} else {
 | |
| 	    nrp1 = nr + 1;
 | |
| 	}
 | |
| 	nlf = ic - nl;
 | |
| 	nrf = ic + 1;
 | |
| 	sgemm_("T", "N", &nlp1, nrhs, &nlp1, &c_b7, &vt[nlf + vt_dim1], ldu, &
 | |
| 		b[nlf + b_dim1], ldb, &c_b8, &bx[nlf + bx_dim1], ldbx);
 | |
| 	sgemm_("T", "N", &nrp1, nrhs, &nrp1, &c_b7, &vt[nrf + vt_dim1], ldu, &
 | |
| 		b[nrf + b_dim1], ldb, &c_b8, &bx[nrf + bx_dim1], ldbx);
 | |
| /* L80: */
 | |
|     }
 | |
| 
 | |
| L90:
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| /*     End of SLALSA */
 | |
| 
 | |
| } /* slalsa_ */
 | |
| 
 |