363 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			363 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SLAGS2 computes 2-by-2 orthogonal matrices U, V, and Q, and applies them to matrices A and B such that the rows of the transformed A and B are parallel.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SLAGS2 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slags2.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slags2.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slags2.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV,
 | |
| *                          SNV, CSQ, SNQ )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       LOGICAL            UPPER
 | |
| *       REAL               A1, A2, A3, B1, B2, B3, CSQ, CSU, CSV, SNQ,
 | |
| *      $                   SNU, SNV
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SLAGS2 computes 2-by-2 orthogonal matrices U, V and Q, such
 | |
| *> that if ( UPPER ) then
 | |
| *>
 | |
| *>           U**T *A*Q = U**T *( A1 A2 )*Q = ( x  0  )
 | |
| *>                             ( 0  A3 )     ( x  x  )
 | |
| *> and
 | |
| *>           V**T*B*Q = V**T *( B1 B2 )*Q = ( x  0  )
 | |
| *>                            ( 0  B3 )     ( x  x  )
 | |
| *>
 | |
| *> or if ( .NOT.UPPER ) then
 | |
| *>
 | |
| *>           U**T *A*Q = U**T *( A1 0  )*Q = ( x  x  )
 | |
| *>                             ( A2 A3 )     ( 0  x  )
 | |
| *> and
 | |
| *>           V**T*B*Q = V**T*( B1 0  )*Q = ( x  x  )
 | |
| *>                           ( B2 B3 )     ( 0  x  )
 | |
| *>
 | |
| *> The rows of the transformed A and B are parallel, where
 | |
| *>
 | |
| *>   U = (  CSU  SNU ), V = (  CSV SNV ), Q = (  CSQ   SNQ )
 | |
| *>       ( -SNU  CSU )      ( -SNV CSV )      ( -SNQ   CSQ )
 | |
| *>
 | |
| *> Z**T denotes the transpose of Z.
 | |
| *>
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPPER
 | |
| *> \verbatim
 | |
| *>          UPPER is LOGICAL
 | |
| *>          = .TRUE.: the input matrices A and B are upper triangular.
 | |
| *>          = .FALSE.: the input matrices A and B are lower triangular.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A1
 | |
| *> \verbatim
 | |
| *>          A1 is REAL
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A2
 | |
| *> \verbatim
 | |
| *>          A2 is REAL
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A3
 | |
| *> \verbatim
 | |
| *>          A3 is REAL
 | |
| *>          On entry, A1, A2 and A3 are elements of the input 2-by-2
 | |
| *>          upper (lower) triangular matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B1
 | |
| *> \verbatim
 | |
| *>          B1 is REAL
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B2
 | |
| *> \verbatim
 | |
| *>          B2 is REAL
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B3
 | |
| *> \verbatim
 | |
| *>          B3 is REAL
 | |
| *>          On entry, B1, B2 and B3 are elements of the input 2-by-2
 | |
| *>          upper (lower) triangular matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] CSU
 | |
| *> \verbatim
 | |
| *>          CSU is REAL
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SNU
 | |
| *> \verbatim
 | |
| *>          SNU is REAL
 | |
| *>          The desired orthogonal matrix U.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] CSV
 | |
| *> \verbatim
 | |
| *>          CSV is REAL
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SNV
 | |
| *> \verbatim
 | |
| *>          SNV is REAL
 | |
| *>          The desired orthogonal matrix V.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] CSQ
 | |
| *> \verbatim
 | |
| *>          CSQ is REAL
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SNQ
 | |
| *> \verbatim
 | |
| *>          SNQ is REAL
 | |
| *>          The desired orthogonal matrix Q.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup realOTHERauxiliary
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV,
 | |
|      $                   SNV, CSQ, SNQ )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       LOGICAL            UPPER
 | |
|       REAL               A1, A2, A3, B1, B2, B3, CSQ, CSU, CSV, SNQ,
 | |
|      $                   SNU, SNV
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO
 | |
|       PARAMETER          ( ZERO = 0.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       REAL               A, AUA11, AUA12, AUA21, AUA22, AVB11, AVB12,
 | |
|      $                   AVB21, AVB22, CSL, CSR, D, S1, S2, SNL,
 | |
|      $                   SNR, UA11R, UA22R, VB11R, VB22R, B, C, R, UA11,
 | |
|      $                   UA12, UA21, UA22, VB11, VB12, VB21, VB22
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SLARTG, SLASV2
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       IF( UPPER ) THEN
 | |
| *
 | |
| *        Input matrices A and B are upper triangular matrices
 | |
| *
 | |
| *        Form matrix C = A*adj(B) = ( a b )
 | |
| *                                   ( 0 d )
 | |
| *
 | |
|          A = A1*B3
 | |
|          D = A3*B1
 | |
|          B = A2*B1 - A1*B2
 | |
| *
 | |
| *        The SVD of real 2-by-2 triangular C
 | |
| *
 | |
| *         ( CSL -SNL )*( A B )*(  CSR  SNR ) = ( R 0 )
 | |
| *         ( SNL  CSL ) ( 0 D ) ( -SNR  CSR )   ( 0 T )
 | |
| *
 | |
|          CALL SLASV2( A, B, D, S1, S2, SNR, CSR, SNL, CSL )
 | |
| *
 | |
|          IF( ABS( CSL ).GE.ABS( SNL ) .OR. ABS( CSR ).GE.ABS( SNR ) )
 | |
|      $        THEN
 | |
| *
 | |
| *           Compute the (1,1) and (1,2) elements of U**T *A and V**T *B,
 | |
| *           and (1,2) element of |U|**T *|A| and |V|**T *|B|.
 | |
| *
 | |
|             UA11R = CSL*A1
 | |
|             UA12 = CSL*A2 + SNL*A3
 | |
| *
 | |
|             VB11R = CSR*B1
 | |
|             VB12 = CSR*B2 + SNR*B3
 | |
| *
 | |
|             AUA12 = ABS( CSL )*ABS( A2 ) + ABS( SNL )*ABS( A3 )
 | |
|             AVB12 = ABS( CSR )*ABS( B2 ) + ABS( SNR )*ABS( B3 )
 | |
| *
 | |
| *           zero (1,2) elements of U**T *A and V**T *B
 | |
| *
 | |
|             IF( ( ABS( UA11R )+ABS( UA12 ) ).NE.ZERO ) THEN
 | |
|                IF( AUA12 / ( ABS( UA11R )+ABS( UA12 ) ).LE.AVB12 /
 | |
|      $             ( ABS( VB11R )+ABS( VB12 ) ) ) THEN
 | |
|                   CALL SLARTG( -UA11R, UA12, CSQ, SNQ, R )
 | |
|                ELSE
 | |
|                   CALL SLARTG( -VB11R, VB12, CSQ, SNQ, R )
 | |
|                END IF
 | |
|             ELSE
 | |
|                CALL SLARTG( -VB11R, VB12, CSQ, SNQ, R )
 | |
|             END IF
 | |
| *
 | |
|             CSU = CSL
 | |
|             SNU = -SNL
 | |
|             CSV = CSR
 | |
|             SNV = -SNR
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           Compute the (2,1) and (2,2) elements of U**T *A and V**T *B,
 | |
| *           and (2,2) element of |U|**T *|A| and |V|**T *|B|.
 | |
| *
 | |
|             UA21 = -SNL*A1
 | |
|             UA22 = -SNL*A2 + CSL*A3
 | |
| *
 | |
|             VB21 = -SNR*B1
 | |
|             VB22 = -SNR*B2 + CSR*B3
 | |
| *
 | |
|             AUA22 = ABS( SNL )*ABS( A2 ) + ABS( CSL )*ABS( A3 )
 | |
|             AVB22 = ABS( SNR )*ABS( B2 ) + ABS( CSR )*ABS( B3 )
 | |
| *
 | |
| *           zero (2,2) elements of U**T*A and V**T*B, and then swap.
 | |
| *
 | |
|             IF( ( ABS( UA21 )+ABS( UA22 ) ).NE.ZERO ) THEN
 | |
|                IF( AUA22 / ( ABS( UA21 )+ABS( UA22 ) ).LE.AVB22 /
 | |
|      $             ( ABS( VB21 )+ABS( VB22 ) ) ) THEN
 | |
|                   CALL SLARTG( -UA21, UA22, CSQ, SNQ, R )
 | |
|                ELSE
 | |
|                   CALL SLARTG( -VB21, VB22, CSQ, SNQ, R )
 | |
|                END IF
 | |
|             ELSE
 | |
|                CALL SLARTG( -VB21, VB22, CSQ, SNQ, R )
 | |
|             END IF
 | |
| *
 | |
|             CSU = SNL
 | |
|             SNU = CSL
 | |
|             CSV = SNR
 | |
|             SNV = CSR
 | |
| *
 | |
|          END IF
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Input matrices A and B are lower triangular matrices
 | |
| *
 | |
| *        Form matrix C = A*adj(B) = ( a 0 )
 | |
| *                                   ( c d )
 | |
| *
 | |
|          A = A1*B3
 | |
|          D = A3*B1
 | |
|          C = A2*B3 - A3*B2
 | |
| *
 | |
| *        The SVD of real 2-by-2 triangular C
 | |
| *
 | |
| *         ( CSL -SNL )*( A 0 )*(  CSR  SNR ) = ( R 0 )
 | |
| *         ( SNL  CSL ) ( C D ) ( -SNR  CSR )   ( 0 T )
 | |
| *
 | |
|          CALL SLASV2( A, C, D, S1, S2, SNR, CSR, SNL, CSL )
 | |
| *
 | |
|          IF( ABS( CSR ).GE.ABS( SNR ) .OR. ABS( CSL ).GE.ABS( SNL ) )
 | |
|      $        THEN
 | |
| *
 | |
| *           Compute the (2,1) and (2,2) elements of U**T *A and V**T *B,
 | |
| *           and (2,1) element of |U|**T *|A| and |V|**T *|B|.
 | |
| *
 | |
|             UA21 = -SNR*A1 + CSR*A2
 | |
|             UA22R = CSR*A3
 | |
| *
 | |
|             VB21 = -SNL*B1 + CSL*B2
 | |
|             VB22R = CSL*B3
 | |
| *
 | |
|             AUA21 = ABS( SNR )*ABS( A1 ) + ABS( CSR )*ABS( A2 )
 | |
|             AVB21 = ABS( SNL )*ABS( B1 ) + ABS( CSL )*ABS( B2 )
 | |
| *
 | |
| *           zero (2,1) elements of U**T *A and V**T *B.
 | |
| *
 | |
|             IF( ( ABS( UA21 )+ABS( UA22R ) ).NE.ZERO ) THEN
 | |
|                IF( AUA21 / ( ABS( UA21 )+ABS( UA22R ) ).LE.AVB21 /
 | |
|      $             ( ABS( VB21 )+ABS( VB22R ) ) ) THEN
 | |
|                   CALL SLARTG( UA22R, UA21, CSQ, SNQ, R )
 | |
|                ELSE
 | |
|                   CALL SLARTG( VB22R, VB21, CSQ, SNQ, R )
 | |
|                END IF
 | |
|             ELSE
 | |
|                CALL SLARTG( VB22R, VB21, CSQ, SNQ, R )
 | |
|             END IF
 | |
| *
 | |
|             CSU = CSR
 | |
|             SNU = -SNR
 | |
|             CSV = CSL
 | |
|             SNV = -SNL
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           Compute the (1,1) and (1,2) elements of U**T *A and V**T *B,
 | |
| *           and (1,1) element of |U|**T *|A| and |V|**T *|B|.
 | |
| *
 | |
|             UA11 = CSR*A1 + SNR*A2
 | |
|             UA12 = SNR*A3
 | |
| *
 | |
|             VB11 = CSL*B1 + SNL*B2
 | |
|             VB12 = SNL*B3
 | |
| *
 | |
|             AUA11 = ABS( CSR )*ABS( A1 ) + ABS( SNR )*ABS( A2 )
 | |
|             AVB11 = ABS( CSL )*ABS( B1 ) + ABS( SNL )*ABS( B2 )
 | |
| *
 | |
| *           zero (1,1) elements of U**T*A and V**T*B, and then swap.
 | |
| *
 | |
|             IF( ( ABS( UA11 )+ABS( UA12 ) ).NE.ZERO ) THEN
 | |
|                IF( AUA11 / ( ABS( UA11 )+ABS( UA12 ) ).LE.AVB11 /
 | |
|      $             ( ABS( VB11 )+ABS( VB12 ) ) ) THEN
 | |
|                   CALL SLARTG( UA12, UA11, CSQ, SNQ, R )
 | |
|                ELSE
 | |
|                   CALL SLARTG( VB12, VB11, CSQ, SNQ, R )
 | |
|                END IF
 | |
|             ELSE
 | |
|                CALL SLARTG( VB12, VB11, CSQ, SNQ, R )
 | |
|             END IF
 | |
| *
 | |
|             CSU = SNR
 | |
|             SNU = CSR
 | |
|             CSV = SNL
 | |
|             SNV = CSL
 | |
| *
 | |
|          END IF
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SLAGS2
 | |
| *
 | |
|       END
 |