857 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			857 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__2 = 2;
 | |
| static integer c__1 = 1;
 | |
| static real c_b24 = 1.f;
 | |
| static real c_b26 = 0.f;
 | |
| 
 | |
| /* > \brief \b SLAEDA used by sstedc. Computes the Z vector determining the rank-one modification of the diago
 | |
| nal matrix. Used when the original matrix is dense. */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download SLAEDA + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaeda.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaeda.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaeda.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE SLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR, */
 | |
| /*                          GIVCOL, GIVNUM, Q, QPTR, Z, ZTEMP, INFO ) */
 | |
| 
 | |
| /*       INTEGER            CURLVL, CURPBM, INFO, N, TLVLS */
 | |
| /*       INTEGER            GIVCOL( 2, * ), GIVPTR( * ), PERM( * ), */
 | |
| /*      $                   PRMPTR( * ), QPTR( * ) */
 | |
| /*       REAL               GIVNUM( 2, * ), Q( * ), Z( * ), ZTEMP( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > SLAEDA computes the Z vector corresponding to the merge step in the */
 | |
| /* > CURLVLth step of the merge process with TLVLS steps for the CURPBMth */
 | |
| /* > problem. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >         The dimension of the symmetric tridiagonal matrix.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] TLVLS */
 | |
| /* > \verbatim */
 | |
| /* >          TLVLS is INTEGER */
 | |
| /* >         The total number of merging levels in the overall divide and */
 | |
| /* >         conquer tree. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] CURLVL */
 | |
| /* > \verbatim */
 | |
| /* >          CURLVL is INTEGER */
 | |
| /* >         The current level in the overall merge routine, */
 | |
| /* >         0 <= curlvl <= tlvls. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] CURPBM */
 | |
| /* > \verbatim */
 | |
| /* >          CURPBM is INTEGER */
 | |
| /* >         The current problem in the current level in the overall */
 | |
| /* >         merge routine (counting from upper left to lower right). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] PRMPTR */
 | |
| /* > \verbatim */
 | |
| /* >          PRMPTR is INTEGER array, dimension (N lg N) */
 | |
| /* >         Contains a list of pointers which indicate where in PERM a */
 | |
| /* >         level's permutation is stored.  PRMPTR(i+1) - PRMPTR(i) */
 | |
| /* >         indicates the size of the permutation and incidentally the */
 | |
| /* >         size of the full, non-deflated problem. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] PERM */
 | |
| /* > \verbatim */
 | |
| /* >          PERM is INTEGER array, dimension (N lg N) */
 | |
| /* >         Contains the permutations (from deflation and sorting) to be */
 | |
| /* >         applied to each eigenblock. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] GIVPTR */
 | |
| /* > \verbatim */
 | |
| /* >          GIVPTR is INTEGER array, dimension (N lg N) */
 | |
| /* >         Contains a list of pointers which indicate where in GIVCOL a */
 | |
| /* >         level's Givens rotations are stored.  GIVPTR(i+1) - GIVPTR(i) */
 | |
| /* >         indicates the number of Givens rotations. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] GIVCOL */
 | |
| /* > \verbatim */
 | |
| /* >          GIVCOL is INTEGER array, dimension (2, N lg N) */
 | |
| /* >         Each pair of numbers indicates a pair of columns to take place */
 | |
| /* >         in a Givens rotation. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] GIVNUM */
 | |
| /* > \verbatim */
 | |
| /* >          GIVNUM is REAL array, dimension (2, N lg N) */
 | |
| /* >         Each number indicates the S value to be used in the */
 | |
| /* >         corresponding Givens rotation. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] Q */
 | |
| /* > \verbatim */
 | |
| /* >          Q is REAL array, dimension (N**2) */
 | |
| /* >         Contains the square eigenblocks from previous levels, the */
 | |
| /* >         starting positions for blocks are given by QPTR. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] QPTR */
 | |
| /* > \verbatim */
 | |
| /* >          QPTR is INTEGER array, dimension (N+2) */
 | |
| /* >         Contains a list of pointers which indicate where in Q an */
 | |
| /* >         eigenblock is stored.  SQRT( QPTR(i+1) - QPTR(i) ) indicates */
 | |
| /* >         the size of the block. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] Z */
 | |
| /* > \verbatim */
 | |
| /* >          Z is REAL array, dimension (N) */
 | |
| /* >         On output this vector contains the updating vector (the last */
 | |
| /* >         row of the first sub-eigenvector matrix and the first row of */
 | |
| /* >         the second sub-eigenvector matrix). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ZTEMP */
 | |
| /* > \verbatim */
 | |
| /* >          ZTEMP is REAL array, dimension (N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit. */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup auxOTHERcomputational */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* > Jeff Rutter, Computer Science Division, University of California */
 | |
| /* > at Berkeley, USA */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ int slaeda_(integer *n, integer *tlvls, integer *curlvl, 
 | |
| 	integer *curpbm, integer *prmptr, integer *perm, integer *givptr, 
 | |
| 	integer *givcol, real *givnum, real *q, integer *qptr, real *z__, 
 | |
| 	real *ztemp, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer i__1, i__2, i__3;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer curr;
 | |
|     extern /* Subroutine */ int srot_(integer *, real *, integer *, real *, 
 | |
| 	    integer *, real *, real *);
 | |
|     integer bsiz1, bsiz2, psiz1, psiz2, i__, k, zptr1;
 | |
|     extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *, 
 | |
| 	    real *, integer *, real *, integer *, real *, real *, integer *), scopy_(integer *, real *, integer *, real *, integer *), 
 | |
| 	    xerbla_(char *, integer *, ftnlen);
 | |
|     integer mid, ptr;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --ztemp;
 | |
|     --z__;
 | |
|     --qptr;
 | |
|     --q;
 | |
|     givnum -= 3;
 | |
|     givcol -= 3;
 | |
|     --givptr;
 | |
|     --perm;
 | |
|     --prmptr;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
| 
 | |
|     if (*n < 0) {
 | |
| 	*info = -1;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("SLAEDA", &i__1, (ftnlen)6);
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*n == 0) {
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
| /*     Determine location of first number in second half. */
 | |
| 
 | |
|     mid = *n / 2 + 1;
 | |
| 
 | |
| /*     Gather last/first rows of appropriate eigenblocks into center of Z */
 | |
| 
 | |
|     ptr = 1;
 | |
| 
 | |
| /*     Determine location of lowest level subproblem in the full storage */
 | |
| /*     scheme */
 | |
| 
 | |
|     i__1 = *curlvl - 1;
 | |
|     curr = ptr + *curpbm * pow_ii(&c__2, curlvl) + pow_ii(&c__2, &i__1) - 1;
 | |
| 
 | |
| /*     Determine size of these matrices.  We add HALF to the value of */
 | |
| /*     the SQRT in case the machine underestimates one of these square */
 | |
| /*     roots. */
 | |
| 
 | |
|     bsiz1 = (integer) (sqrt((real) (qptr[curr + 1] - qptr[curr])) + .5f);
 | |
|     bsiz2 = (integer) (sqrt((real) (qptr[curr + 2] - qptr[curr + 1])) + .5f);
 | |
|     i__1 = mid - bsiz1 - 1;
 | |
|     for (k = 1; k <= i__1; ++k) {
 | |
| 	z__[k] = 0.f;
 | |
| /* L10: */
 | |
|     }
 | |
|     scopy_(&bsiz1, &q[qptr[curr] + bsiz1 - 1], &bsiz1, &z__[mid - bsiz1], &
 | |
| 	    c__1);
 | |
|     scopy_(&bsiz2, &q[qptr[curr + 1]], &bsiz2, &z__[mid], &c__1);
 | |
|     i__1 = *n;
 | |
|     for (k = mid + bsiz2; k <= i__1; ++k) {
 | |
| 	z__[k] = 0.f;
 | |
| /* L20: */
 | |
|     }
 | |
| 
 | |
| /*     Loop through remaining levels 1 -> CURLVL applying the Givens */
 | |
| /*     rotations and permutation and then multiplying the center matrices */
 | |
| /*     against the current Z. */
 | |
| 
 | |
|     ptr = pow_ii(&c__2, tlvls) + 1;
 | |
|     i__1 = *curlvl - 1;
 | |
|     for (k = 1; k <= i__1; ++k) {
 | |
| 	i__2 = *curlvl - k;
 | |
| 	i__3 = *curlvl - k - 1;
 | |
| 	curr = ptr + *curpbm * pow_ii(&c__2, &i__2) + pow_ii(&c__2, &i__3) - 
 | |
| 		1;
 | |
| 	psiz1 = prmptr[curr + 1] - prmptr[curr];
 | |
| 	psiz2 = prmptr[curr + 2] - prmptr[curr + 1];
 | |
| 	zptr1 = mid - psiz1;
 | |
| 
 | |
| /*       Apply Givens at CURR and CURR+1 */
 | |
| 
 | |
| 	i__2 = givptr[curr + 1] - 1;
 | |
| 	for (i__ = givptr[curr]; i__ <= i__2; ++i__) {
 | |
| 	    srot_(&c__1, &z__[zptr1 + givcol[(i__ << 1) + 1] - 1], &c__1, &
 | |
| 		    z__[zptr1 + givcol[(i__ << 1) + 2] - 1], &c__1, &givnum[(
 | |
| 		    i__ << 1) + 1], &givnum[(i__ << 1) + 2]);
 | |
| /* L30: */
 | |
| 	}
 | |
| 	i__2 = givptr[curr + 2] - 1;
 | |
| 	for (i__ = givptr[curr + 1]; i__ <= i__2; ++i__) {
 | |
| 	    srot_(&c__1, &z__[mid - 1 + givcol[(i__ << 1) + 1]], &c__1, &z__[
 | |
| 		    mid - 1 + givcol[(i__ << 1) + 2]], &c__1, &givnum[(i__ << 
 | |
| 		    1) + 1], &givnum[(i__ << 1) + 2]);
 | |
| /* L40: */
 | |
| 	}
 | |
| 	psiz1 = prmptr[curr + 1] - prmptr[curr];
 | |
| 	psiz2 = prmptr[curr + 2] - prmptr[curr + 1];
 | |
| 	i__2 = psiz1 - 1;
 | |
| 	for (i__ = 0; i__ <= i__2; ++i__) {
 | |
| 	    ztemp[i__ + 1] = z__[zptr1 + perm[prmptr[curr] + i__] - 1];
 | |
| /* L50: */
 | |
| 	}
 | |
| 	i__2 = psiz2 - 1;
 | |
| 	for (i__ = 0; i__ <= i__2; ++i__) {
 | |
| 	    ztemp[psiz1 + i__ + 1] = z__[mid + perm[prmptr[curr + 1] + i__] - 
 | |
| 		    1];
 | |
| /* L60: */
 | |
| 	}
 | |
| 
 | |
| /*        Multiply Blocks at CURR and CURR+1 */
 | |
| 
 | |
| /*        Determine size of these matrices.  We add HALF to the value of */
 | |
| /*        the SQRT in case the machine underestimates one of these */
 | |
| /*        square roots. */
 | |
| 
 | |
| 	bsiz1 = (integer) (sqrt((real) (qptr[curr + 1] - qptr[curr])) + .5f);
 | |
| 	bsiz2 = (integer) (sqrt((real) (qptr[curr + 2] - qptr[curr + 1])) + 
 | |
| 		.5f);
 | |
| 	if (bsiz1 > 0) {
 | |
| 	    sgemv_("T", &bsiz1, &bsiz1, &c_b24, &q[qptr[curr]], &bsiz1, &
 | |
| 		    ztemp[1], &c__1, &c_b26, &z__[zptr1], &c__1);
 | |
| 	}
 | |
| 	i__2 = psiz1 - bsiz1;
 | |
| 	scopy_(&i__2, &ztemp[bsiz1 + 1], &c__1, &z__[zptr1 + bsiz1], &c__1);
 | |
| 	if (bsiz2 > 0) {
 | |
| 	    sgemv_("T", &bsiz2, &bsiz2, &c_b24, &q[qptr[curr + 1]], &bsiz2, &
 | |
| 		    ztemp[psiz1 + 1], &c__1, &c_b26, &z__[mid], &c__1);
 | |
| 	}
 | |
| 	i__2 = psiz2 - bsiz2;
 | |
| 	scopy_(&i__2, &ztemp[psiz1 + bsiz2 + 1], &c__1, &z__[mid + bsiz2], &
 | |
| 		c__1);
 | |
| 
 | |
| 	i__2 = *tlvls - k;
 | |
| 	ptr += pow_ii(&c__2, &i__2);
 | |
| /* L70: */
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| /*     End of SLAEDA */
 | |
| 
 | |
| } /* slaeda_ */
 | |
| 
 |