1553 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			1553 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SGESDD
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SGESDD + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgesdd.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgesdd.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgesdd.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SGESDD( JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT,
 | |
| *                          WORK, LWORK, IWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBZ
 | |
| *       INTEGER            INFO, LDA, LDU, LDVT, LWORK, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IWORK( * )
 | |
| *       REAL   A( LDA, * ), S( * ), U( LDU, * ),
 | |
| *      $                   VT( LDVT, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SGESDD computes the singular value decomposition (SVD) of a real
 | |
| *> M-by-N matrix A, optionally computing the left and right singular
 | |
| *> vectors.  If singular vectors are desired, it uses a
 | |
| *> divide-and-conquer algorithm.
 | |
| *>
 | |
| *> The SVD is written
 | |
| *>
 | |
| *>      A = U * SIGMA * transpose(V)
 | |
| *>
 | |
| *> where SIGMA is an M-by-N matrix which is zero except for its
 | |
| *> min(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and
 | |
| *> V is an N-by-N orthogonal matrix.  The diagonal elements of SIGMA
 | |
| *> are the singular values of A; they are real and non-negative, and
 | |
| *> are returned in descending order.  The first min(m,n) columns of
 | |
| *> U and V are the left and right singular vectors of A.
 | |
| *>
 | |
| *> Note that the routine returns VT = V**T, not V.
 | |
| *>
 | |
| *> The divide and conquer algorithm makes very mild assumptions about
 | |
| *> floating point arithmetic. It will work on machines with a guard
 | |
| *> digit in add/subtract, or on those binary machines without guard
 | |
| *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
 | |
| *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
 | |
| *> without guard digits, but we know of none.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBZ
 | |
| *> \verbatim
 | |
| *>          JOBZ is CHARACTER*1
 | |
| *>          Specifies options for computing all or part of the matrix U:
 | |
| *>          = 'A':  all M columns of U and all N rows of V**T are
 | |
| *>                  returned in the arrays U and VT;
 | |
| *>          = 'S':  the first min(M,N) columns of U and the first
 | |
| *>                  min(M,N) rows of V**T are returned in the arrays U
 | |
| *>                  and VT;
 | |
| *>          = 'O':  If M >= N, the first N columns of U are overwritten
 | |
| *>                  on the array A and all rows of V**T are returned in
 | |
| *>                  the array VT;
 | |
| *>                  otherwise, all columns of U are returned in the
 | |
| *>                  array U and the first M rows of V**T are overwritten
 | |
| *>                  in the array A;
 | |
| *>          = 'N':  no columns of U or rows of V**T are computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the input matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the input matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,N)
 | |
| *>          On entry, the M-by-N matrix A.
 | |
| *>          On exit,
 | |
| *>          if JOBZ = 'O',  A is overwritten with the first N columns
 | |
| *>                          of U (the left singular vectors, stored
 | |
| *>                          columnwise) if M >= N;
 | |
| *>                          A is overwritten with the first M rows
 | |
| *>                          of V**T (the right singular vectors, stored
 | |
| *>                          rowwise) otherwise.
 | |
| *>          if JOBZ .ne. 'O', the contents of A are destroyed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] S
 | |
| *> \verbatim
 | |
| *>          S is REAL array, dimension (min(M,N))
 | |
| *>          The singular values of A, sorted so that S(i) >= S(i+1).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] U
 | |
| *> \verbatim
 | |
| *>          U is REAL array, dimension (LDU,UCOL)
 | |
| *>          UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N;
 | |
| *>          UCOL = min(M,N) if JOBZ = 'S'.
 | |
| *>          If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M
 | |
| *>          orthogonal matrix U;
 | |
| *>          if JOBZ = 'S', U contains the first min(M,N) columns of U
 | |
| *>          (the left singular vectors, stored columnwise);
 | |
| *>          if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU
 | |
| *> \verbatim
 | |
| *>          LDU is INTEGER
 | |
| *>          The leading dimension of the array U.  LDU >= 1; if
 | |
| *>          JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] VT
 | |
| *> \verbatim
 | |
| *>          VT is REAL array, dimension (LDVT,N)
 | |
| *>          If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the
 | |
| *>          N-by-N orthogonal matrix V**T;
 | |
| *>          if JOBZ = 'S', VT contains the first min(M,N) rows of
 | |
| *>          V**T (the right singular vectors, stored rowwise);
 | |
| *>          if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVT
 | |
| *> \verbatim
 | |
| *>          LDVT is INTEGER
 | |
| *>          The leading dimension of the array VT.  LDVT >= 1;
 | |
| *>          if JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N;
 | |
| *>          if JOBZ = 'S', LDVT >= min(M,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK;
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK. LWORK >= 1.
 | |
| *>          If LWORK = -1, a workspace query is assumed.  The optimal
 | |
| *>          size for the WORK array is calculated and stored in WORK(1),
 | |
| *>          and no other work except argument checking is performed.
 | |
| *>
 | |
| *>          Let mx = max(M,N) and mn = min(M,N).
 | |
| *>          If JOBZ = 'N', LWORK >= 3*mn + max( mx, 7*mn ).
 | |
| *>          If JOBZ = 'O', LWORK >= 3*mn + max( mx, 5*mn*mn + 4*mn ).
 | |
| *>          If JOBZ = 'S', LWORK >= 4*mn*mn + 7*mn.
 | |
| *>          If JOBZ = 'A', LWORK >= 4*mn*mn + 6*mn + mx.
 | |
| *>          These are not tight minimums in all cases; see comments inside code.
 | |
| *>          For good performance, LWORK should generally be larger;
 | |
| *>          a query is recommended.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (8*min(M,N))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit.
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>          > 0:  SBDSDC did not converge, updating process failed.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date June 2016
 | |
| *
 | |
| *> \ingroup realGEsing
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Ming Gu and Huan Ren, Computer Science Division, University of
 | |
| *>     California at Berkeley, USA
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SGESDD( JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT,
 | |
|      $                   WORK, LWORK, IWORK, INFO )
 | |
|       implicit none
 | |
| *
 | |
| *  -- LAPACK driver routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     June 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBZ
 | |
|       INTEGER            INFO, LDA, LDU, LDVT, LWORK, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IWORK( * )
 | |
|       REAL   A( LDA, * ), S( * ), U( LDU, * ),
 | |
|      $                   VT( LDVT, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY, WNTQA, WNTQAS, WNTQN, WNTQO, WNTQS
 | |
|       INTEGER            BDSPAC, BLK, CHUNK, I, IE, IERR, IL,
 | |
|      $                   IR, ISCL, ITAU, ITAUP, ITAUQ, IU, IVT, LDWKVT,
 | |
|      $                   LDWRKL, LDWRKR, LDWRKU, MAXWRK, MINMN, MINWRK,
 | |
|      $                   MNTHR, NWORK, WRKBL
 | |
|       INTEGER            LWORK_SGEBRD_MN, LWORK_SGEBRD_MM,
 | |
|      $                   LWORK_SGEBRD_NN, LWORK_SGELQF_MN,
 | |
|      $                   LWORK_SGEQRF_MN,
 | |
|      $                   LWORK_SORGBR_P_MM, LWORK_SORGBR_Q_NN,
 | |
|      $                   LWORK_SORGLQ_MN, LWORK_SORGLQ_NN,
 | |
|      $                   LWORK_SORGQR_MM, LWORK_SORGQR_MN,
 | |
|      $                   LWORK_SORMBR_PRT_MM, LWORK_SORMBR_QLN_MM,
 | |
|      $                   LWORK_SORMBR_PRT_MN, LWORK_SORMBR_QLN_MN,
 | |
|      $                   LWORK_SORMBR_PRT_NN, LWORK_SORMBR_QLN_NN
 | |
|       REAL   ANRM, BIGNUM, EPS, SMLNUM
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            IDUM( 1 )
 | |
|       REAL               DUM( 1 )
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SBDSDC, SGEBRD, SGELQF, SGEMM, SGEQRF, SLACPY,
 | |
|      $                   SLASCL, SLASET, SORGBR, SORGLQ, SORGQR, SORMBR,
 | |
|      $                   XERBLA
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME, SISNAN
 | |
|       REAL               SLAMCH, SLANGE
 | |
|       EXTERNAL           SLAMCH, SLANGE, LSAME, SISNAN
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          INT, MAX, MIN, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       INFO   = 0
 | |
|       MINMN  = MIN( M, N )
 | |
|       WNTQA  = LSAME( JOBZ, 'A' )
 | |
|       WNTQS  = LSAME( JOBZ, 'S' )
 | |
|       WNTQAS = WNTQA .OR. WNTQS
 | |
|       WNTQO  = LSAME( JOBZ, 'O' )
 | |
|       WNTQN  = LSAME( JOBZ, 'N' )
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
| *
 | |
|       IF( .NOT.( WNTQA .OR. WNTQS .OR. WNTQO .OR. WNTQN ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( M.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDU.LT.1 .OR. ( WNTQAS .AND. LDU.LT.M ) .OR.
 | |
|      $         ( WNTQO .AND. M.LT.N .AND. LDU.LT.M ) ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( LDVT.LT.1 .OR. ( WNTQA .AND. LDVT.LT.N ) .OR.
 | |
|      $         ( WNTQS .AND. LDVT.LT.MINMN ) .OR.
 | |
|      $         ( WNTQO .AND. M.GE.N .AND. LDVT.LT.N ) ) THEN
 | |
|          INFO = -10
 | |
|       END IF
 | |
| *
 | |
| *     Compute workspace
 | |
| *       Note: Comments in the code beginning "Workspace:" describe the
 | |
| *       minimal amount of workspace allocated at that point in the code,
 | |
| *       as well as the preferred amount for good performance.
 | |
| *       NB refers to the optimal block size for the immediately
 | |
| *       following subroutine, as returned by ILAENV.
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          MINWRK = 1
 | |
|          MAXWRK = 1
 | |
|          BDSPAC = 0
 | |
|          MNTHR  = INT( MINMN*11.0E0 / 6.0E0 )
 | |
|          IF( M.GE.N .AND. MINMN.GT.0 ) THEN
 | |
| *
 | |
| *           Compute space needed for SBDSDC
 | |
| *
 | |
|             IF( WNTQN ) THEN
 | |
| *              sbdsdc needs only 4*N (or 6*N for uplo=L for LAPACK <= 3.6)
 | |
| *              keep 7*N for backwards compatibility.
 | |
|                BDSPAC = 7*N
 | |
|             ELSE
 | |
|                BDSPAC = 3*N*N + 4*N
 | |
|             END IF
 | |
| *
 | |
| *           Compute space preferred for each routine
 | |
|             CALL SGEBRD( M, N, DUM(1), M, DUM(1), DUM(1), DUM(1),
 | |
|      $                   DUM(1), DUM(1), -1, IERR )
 | |
|             LWORK_SGEBRD_MN = INT( DUM(1) )
 | |
| *
 | |
|             CALL SGEBRD( N, N, DUM(1), N, DUM(1), DUM(1), DUM(1),
 | |
|      $                   DUM(1), DUM(1), -1, IERR )
 | |
|             LWORK_SGEBRD_NN = INT( DUM(1) )
 | |
| *
 | |
|             CALL SGEQRF( M, N, DUM(1), M, DUM(1), DUM(1), -1, IERR )
 | |
|             LWORK_SGEQRF_MN = INT( DUM(1) )
 | |
| *
 | |
|             CALL SORGBR( 'Q', N, N, N, DUM(1), N, DUM(1), DUM(1), -1,
 | |
|      $                   IERR )
 | |
|             LWORK_SORGBR_Q_NN = INT( DUM(1) )
 | |
| *
 | |
|             CALL SORGQR( M, M, N, DUM(1), M, DUM(1), DUM(1), -1, IERR )
 | |
|             LWORK_SORGQR_MM = INT( DUM(1) )
 | |
| *
 | |
|             CALL SORGQR( M, N, N, DUM(1), M, DUM(1), DUM(1), -1, IERR )
 | |
|             LWORK_SORGQR_MN = INT( DUM(1) )
 | |
| *
 | |
|             CALL SORMBR( 'P', 'R', 'T', N, N, N, DUM(1), N,
 | |
|      $                   DUM(1), DUM(1), N, DUM(1), -1, IERR )
 | |
|             LWORK_SORMBR_PRT_NN = INT( DUM(1) )
 | |
| *
 | |
|             CALL SORMBR( 'Q', 'L', 'N', N, N, N, DUM(1), N,
 | |
|      $                   DUM(1), DUM(1), N, DUM(1), -1, IERR )
 | |
|             LWORK_SORMBR_QLN_NN = INT( DUM(1) )
 | |
| *
 | |
|             CALL SORMBR( 'Q', 'L', 'N', M, N, N, DUM(1), M,
 | |
|      $                   DUM(1), DUM(1), M, DUM(1), -1, IERR )
 | |
|             LWORK_SORMBR_QLN_MN = INT( DUM(1) )
 | |
| *
 | |
|             CALL SORMBR( 'Q', 'L', 'N', M, M, N, DUM(1), M,
 | |
|      $                   DUM(1), DUM(1), M, DUM(1), -1, IERR )
 | |
|             LWORK_SORMBR_QLN_MM = INT( DUM(1) )
 | |
| *
 | |
|             IF( M.GE.MNTHR ) THEN
 | |
|                IF( WNTQN ) THEN
 | |
| *
 | |
| *                 Path 1 (M >> N, JOBZ='N')
 | |
| *
 | |
|                   WRKBL = N + LWORK_SGEQRF_MN
 | |
|                   WRKBL = MAX( WRKBL, 3*N + LWORK_SGEBRD_NN )
 | |
|                   MAXWRK = MAX( WRKBL, BDSPAC + N )
 | |
|                   MINWRK = BDSPAC + N
 | |
|                ELSE IF( WNTQO ) THEN
 | |
| *
 | |
| *                 Path 2 (M >> N, JOBZ='O')
 | |
| *
 | |
|                   WRKBL = N + LWORK_SGEQRF_MN
 | |
|                   WRKBL = MAX( WRKBL,   N + LWORK_SORGQR_MN )
 | |
|                   WRKBL = MAX( WRKBL, 3*N + LWORK_SGEBRD_NN )
 | |
|                   WRKBL = MAX( WRKBL, 3*N + LWORK_SORMBR_QLN_NN )
 | |
|                   WRKBL = MAX( WRKBL, 3*N + LWORK_SORMBR_PRT_NN )
 | |
|                   WRKBL = MAX( WRKBL, 3*N + BDSPAC )
 | |
|                   MAXWRK = WRKBL + 2*N*N
 | |
|                   MINWRK = BDSPAC + 2*N*N + 3*N
 | |
|                ELSE IF( WNTQS ) THEN
 | |
| *
 | |
| *                 Path 3 (M >> N, JOBZ='S')
 | |
| *
 | |
|                   WRKBL = N + LWORK_SGEQRF_MN
 | |
|                   WRKBL = MAX( WRKBL,   N + LWORK_SORGQR_MN )
 | |
|                   WRKBL = MAX( WRKBL, 3*N + LWORK_SGEBRD_NN )
 | |
|                   WRKBL = MAX( WRKBL, 3*N + LWORK_SORMBR_QLN_NN )
 | |
|                   WRKBL = MAX( WRKBL, 3*N + LWORK_SORMBR_PRT_NN )
 | |
|                   WRKBL = MAX( WRKBL, 3*N + BDSPAC )
 | |
|                   MAXWRK = WRKBL + N*N
 | |
|                   MINWRK = BDSPAC + N*N + 3*N
 | |
|                ELSE IF( WNTQA ) THEN
 | |
| *
 | |
| *                 Path 4 (M >> N, JOBZ='A')
 | |
| *
 | |
|                   WRKBL = N + LWORK_SGEQRF_MN
 | |
|                   WRKBL = MAX( WRKBL,   N + LWORK_SORGQR_MM )
 | |
|                   WRKBL = MAX( WRKBL, 3*N + LWORK_SGEBRD_NN )
 | |
|                   WRKBL = MAX( WRKBL, 3*N + LWORK_SORMBR_QLN_NN )
 | |
|                   WRKBL = MAX( WRKBL, 3*N + LWORK_SORMBR_PRT_NN )
 | |
|                   WRKBL = MAX( WRKBL, 3*N + BDSPAC )
 | |
|                   MAXWRK = WRKBL + N*N
 | |
|                   MINWRK = N*N + MAX( 3*N + BDSPAC, N + M )
 | |
|                END IF
 | |
|             ELSE
 | |
| *
 | |
| *              Path 5 (M >= N, but not much larger)
 | |
| *
 | |
|                WRKBL = 3*N + LWORK_SGEBRD_MN
 | |
|                IF( WNTQN ) THEN
 | |
| *                 Path 5n (M >= N, jobz='N')
 | |
|                   MAXWRK = MAX( WRKBL, 3*N + BDSPAC )
 | |
|                   MINWRK = 3*N + MAX( M, BDSPAC )
 | |
|                ELSE IF( WNTQO ) THEN
 | |
| *                 Path 5o (M >= N, jobz='O')
 | |
|                   WRKBL = MAX( WRKBL, 3*N + LWORK_SORMBR_PRT_NN )
 | |
|                   WRKBL = MAX( WRKBL, 3*N + LWORK_SORMBR_QLN_MN )
 | |
|                   WRKBL = MAX( WRKBL, 3*N + BDSPAC )
 | |
|                   MAXWRK = WRKBL + M*N
 | |
|                   MINWRK = 3*N + MAX( M, N*N + BDSPAC )
 | |
|                ELSE IF( WNTQS ) THEN
 | |
| *                 Path 5s (M >= N, jobz='S')
 | |
|                   WRKBL = MAX( WRKBL, 3*N + LWORK_SORMBR_QLN_MN )
 | |
|                   WRKBL = MAX( WRKBL, 3*N + LWORK_SORMBR_PRT_NN )
 | |
|                   MAXWRK = MAX( WRKBL, 3*N + BDSPAC )
 | |
|                   MINWRK = 3*N + MAX( M, BDSPAC )
 | |
|                ELSE IF( WNTQA ) THEN
 | |
| *                 Path 5a (M >= N, jobz='A')
 | |
|                   WRKBL = MAX( WRKBL, 3*N + LWORK_SORMBR_QLN_MM )
 | |
|                   WRKBL = MAX( WRKBL, 3*N + LWORK_SORMBR_PRT_NN )
 | |
|                   MAXWRK = MAX( WRKBL, 3*N + BDSPAC )
 | |
|                   MINWRK = 3*N + MAX( M, BDSPAC )
 | |
|                END IF
 | |
|             END IF
 | |
|          ELSE IF( MINMN.GT.0 ) THEN
 | |
| *
 | |
| *           Compute space needed for SBDSDC
 | |
| *
 | |
|             IF( WNTQN ) THEN
 | |
| *              sbdsdc needs only 4*N (or 6*N for uplo=L for LAPACK <= 3.6)
 | |
| *              keep 7*N for backwards compatibility.
 | |
|                BDSPAC = 7*M
 | |
|             ELSE
 | |
|                BDSPAC = 3*M*M + 4*M
 | |
|             END IF
 | |
| *
 | |
| *           Compute space preferred for each routine
 | |
|             CALL SGEBRD( M, N, DUM(1), M, DUM(1), DUM(1), DUM(1),
 | |
|      $                   DUM(1), DUM(1), -1, IERR )
 | |
|             LWORK_SGEBRD_MN = INT( DUM(1) )
 | |
| *
 | |
|             CALL SGEBRD( M, M, A, M, S, DUM(1), DUM(1),
 | |
|      $                   DUM(1), DUM(1), -1, IERR )
 | |
|             LWORK_SGEBRD_MM = INT( DUM(1) )
 | |
| *
 | |
|             CALL SGELQF( M, N, A, M, DUM(1), DUM(1), -1, IERR )
 | |
|             LWORK_SGELQF_MN = INT( DUM(1) )
 | |
| *
 | |
|             CALL SORGLQ( N, N, M, DUM(1), N, DUM(1), DUM(1), -1, IERR )
 | |
|             LWORK_SORGLQ_NN = INT( DUM(1) )
 | |
| *
 | |
|             CALL SORGLQ( M, N, M, A, M, DUM(1), DUM(1), -1, IERR )
 | |
|             LWORK_SORGLQ_MN = INT( DUM(1) )
 | |
| *
 | |
|             CALL SORGBR( 'P', M, M, M, A, N, DUM(1), DUM(1), -1, IERR )
 | |
|             LWORK_SORGBR_P_MM = INT( DUM(1) )
 | |
| *
 | |
|             CALL SORMBR( 'P', 'R', 'T', M, M, M, DUM(1), M,
 | |
|      $                   DUM(1), DUM(1), M, DUM(1), -1, IERR )
 | |
|             LWORK_SORMBR_PRT_MM = INT( DUM(1) )
 | |
| *
 | |
|             CALL SORMBR( 'P', 'R', 'T', M, N, M, DUM(1), M,
 | |
|      $                   DUM(1), DUM(1), M, DUM(1), -1, IERR )
 | |
|             LWORK_SORMBR_PRT_MN = INT( DUM(1) )
 | |
| *
 | |
|             CALL SORMBR( 'P', 'R', 'T', N, N, M, DUM(1), N,
 | |
|      $                   DUM(1), DUM(1), N, DUM(1), -1, IERR )
 | |
|             LWORK_SORMBR_PRT_NN = INT( DUM(1) )
 | |
| *
 | |
|             CALL SORMBR( 'Q', 'L', 'N', M, M, M, DUM(1), M,
 | |
|      $                   DUM(1), DUM(1), M, DUM(1), -1, IERR )
 | |
|             LWORK_SORMBR_QLN_MM = INT( DUM(1) )
 | |
| *
 | |
|             IF( N.GE.MNTHR ) THEN
 | |
|                IF( WNTQN ) THEN
 | |
| *
 | |
| *                 Path 1t (N >> M, JOBZ='N')
 | |
| *
 | |
|                   WRKBL = M + LWORK_SGELQF_MN
 | |
|                   WRKBL = MAX( WRKBL, 3*M + LWORK_SGEBRD_MM )
 | |
|                   MAXWRK = MAX( WRKBL, BDSPAC + M )
 | |
|                   MINWRK = BDSPAC + M
 | |
|                ELSE IF( WNTQO ) THEN
 | |
| *
 | |
| *                 Path 2t (N >> M, JOBZ='O')
 | |
| *
 | |
|                   WRKBL = M + LWORK_SGELQF_MN
 | |
|                   WRKBL = MAX( WRKBL,   M + LWORK_SORGLQ_MN )
 | |
|                   WRKBL = MAX( WRKBL, 3*M + LWORK_SGEBRD_MM )
 | |
|                   WRKBL = MAX( WRKBL, 3*M + LWORK_SORMBR_QLN_MM )
 | |
|                   WRKBL = MAX( WRKBL, 3*M + LWORK_SORMBR_PRT_MM )
 | |
|                   WRKBL = MAX( WRKBL, 3*M + BDSPAC )
 | |
|                   MAXWRK = WRKBL + 2*M*M
 | |
|                   MINWRK = BDSPAC + 2*M*M + 3*M
 | |
|                ELSE IF( WNTQS ) THEN
 | |
| *
 | |
| *                 Path 3t (N >> M, JOBZ='S')
 | |
| *
 | |
|                   WRKBL = M + LWORK_SGELQF_MN
 | |
|                   WRKBL = MAX( WRKBL,   M + LWORK_SORGLQ_MN )
 | |
|                   WRKBL = MAX( WRKBL, 3*M + LWORK_SGEBRD_MM )
 | |
|                   WRKBL = MAX( WRKBL, 3*M + LWORK_SORMBR_QLN_MM )
 | |
|                   WRKBL = MAX( WRKBL, 3*M + LWORK_SORMBR_PRT_MM )
 | |
|                   WRKBL = MAX( WRKBL, 3*M + BDSPAC )
 | |
|                   MAXWRK = WRKBL + M*M
 | |
|                   MINWRK = BDSPAC + M*M + 3*M
 | |
|                ELSE IF( WNTQA ) THEN
 | |
| *
 | |
| *                 Path 4t (N >> M, JOBZ='A')
 | |
| *
 | |
|                   WRKBL = M + LWORK_SGELQF_MN
 | |
|                   WRKBL = MAX( WRKBL,   M + LWORK_SORGLQ_NN )
 | |
|                   WRKBL = MAX( WRKBL, 3*M + LWORK_SGEBRD_MM )
 | |
|                   WRKBL = MAX( WRKBL, 3*M + LWORK_SORMBR_QLN_MM )
 | |
|                   WRKBL = MAX( WRKBL, 3*M + LWORK_SORMBR_PRT_MM )
 | |
|                   WRKBL = MAX( WRKBL, 3*M + BDSPAC )
 | |
|                   MAXWRK = WRKBL + M*M
 | |
|                   MINWRK = M*M + MAX( 3*M + BDSPAC, M + N )
 | |
|                END IF
 | |
|             ELSE
 | |
| *
 | |
| *              Path 5t (N > M, but not much larger)
 | |
| *
 | |
|                WRKBL = 3*M + LWORK_SGEBRD_MN
 | |
|                IF( WNTQN ) THEN
 | |
| *                 Path 5tn (N > M, jobz='N')
 | |
|                   MAXWRK = MAX( WRKBL, 3*M + BDSPAC )
 | |
|                   MINWRK = 3*M + MAX( N, BDSPAC )
 | |
|                ELSE IF( WNTQO ) THEN
 | |
| *                 Path 5to (N > M, jobz='O')
 | |
|                   WRKBL = MAX( WRKBL, 3*M + LWORK_SORMBR_QLN_MM )
 | |
|                   WRKBL = MAX( WRKBL, 3*M + LWORK_SORMBR_PRT_MN )
 | |
|                   WRKBL = MAX( WRKBL, 3*M + BDSPAC )
 | |
|                   MAXWRK = WRKBL + M*N
 | |
|                   MINWRK = 3*M + MAX( N, M*M + BDSPAC )
 | |
|                ELSE IF( WNTQS ) THEN
 | |
| *                 Path 5ts (N > M, jobz='S')
 | |
|                   WRKBL = MAX( WRKBL, 3*M + LWORK_SORMBR_QLN_MM )
 | |
|                   WRKBL = MAX( WRKBL, 3*M + LWORK_SORMBR_PRT_MN )
 | |
|                   MAXWRK = MAX( WRKBL, 3*M + BDSPAC )
 | |
|                   MINWRK = 3*M + MAX( N, BDSPAC )
 | |
|                ELSE IF( WNTQA ) THEN
 | |
| *                 Path 5ta (N > M, jobz='A')
 | |
|                   WRKBL = MAX( WRKBL, 3*M + LWORK_SORMBR_QLN_MM )
 | |
|                   WRKBL = MAX( WRKBL, 3*M + LWORK_SORMBR_PRT_NN )
 | |
|                   MAXWRK = MAX( WRKBL, 3*M + BDSPAC )
 | |
|                   MINWRK = 3*M + MAX( N, BDSPAC )
 | |
|                END IF
 | |
|             END IF
 | |
|          END IF
 | |
| 
 | |
|          MAXWRK = MAX( MAXWRK, MINWRK )
 | |
|          WORK( 1 ) = MAXWRK
 | |
| *
 | |
|          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -12
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SGESDD', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Get machine constants
 | |
| *
 | |
|       EPS = SLAMCH( 'P' )
 | |
|       SMLNUM = SQRT( SLAMCH( 'S' ) ) / EPS
 | |
|       BIGNUM = ONE / SMLNUM
 | |
| *
 | |
| *     Scale A if max element outside range [SMLNUM,BIGNUM]
 | |
| *
 | |
|       ANRM = SLANGE( 'M', M, N, A, LDA, DUM )
 | |
|       IF( SISNAN( ANRM ) ) THEN
 | |
|           INFO = -4
 | |
|           RETURN
 | |
|       END IF
 | |
|       ISCL = 0
 | |
|       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
 | |
|          ISCL = 1
 | |
|          CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, IERR )
 | |
|       ELSE IF( ANRM.GT.BIGNUM ) THEN
 | |
|          ISCL = 1
 | |
|          CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, IERR )
 | |
|       END IF
 | |
| *
 | |
|       IF( M.GE.N ) THEN
 | |
| *
 | |
| *        A has at least as many rows as columns. If A has sufficiently
 | |
| *        more rows than columns, first reduce using the QR
 | |
| *        decomposition (if sufficient workspace available)
 | |
| *
 | |
|          IF( M.GE.MNTHR ) THEN
 | |
| *
 | |
|             IF( WNTQN ) THEN
 | |
| *
 | |
| *              Path 1 (M >> N, JOBZ='N')
 | |
| *              No singular vectors to be computed
 | |
| *
 | |
|                ITAU = 1
 | |
|                NWORK = ITAU + N
 | |
| *
 | |
| *              Compute A=Q*R
 | |
| *              Workspace: need   N [tau] + N    [work]
 | |
| *              Workspace: prefer N [tau] + N*NB [work]
 | |
| *
 | |
|                CALL SGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
 | |
|      $                      LWORK - NWORK + 1, IERR )
 | |
| *
 | |
| *              Zero out below R
 | |
| *
 | |
|                CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ), LDA )
 | |
|                IE = 1
 | |
|                ITAUQ = IE + N
 | |
|                ITAUP = ITAUQ + N
 | |
|                NWORK = ITAUP + N
 | |
| *
 | |
| *              Bidiagonalize R in A
 | |
| *              Workspace: need   3*N [e, tauq, taup] + N      [work]
 | |
| *              Workspace: prefer 3*N [e, tauq, taup] + 2*N*NB [work]
 | |
| *
 | |
|                CALL SGEBRD( N, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
 | |
|      $                      WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
 | |
|      $                      IERR )
 | |
|                NWORK = IE + N
 | |
| *
 | |
| *              Perform bidiagonal SVD, computing singular values only
 | |
| *              Workspace: need   N [e] + BDSPAC
 | |
| *
 | |
|                CALL SBDSDC( 'U', 'N', N, S, WORK( IE ), DUM, 1, DUM, 1,
 | |
|      $                      DUM, IDUM, WORK( NWORK ), IWORK, INFO )
 | |
| *
 | |
|             ELSE IF( WNTQO ) THEN
 | |
| *
 | |
| *              Path 2 (M >> N, JOBZ = 'O')
 | |
| *              N left singular vectors to be overwritten on A and
 | |
| *              N right singular vectors to be computed in VT
 | |
| *
 | |
|                IR = 1
 | |
| *
 | |
| *              WORK(IR) is LDWRKR by N
 | |
| *
 | |
|                IF( LWORK .GE. LDA*N + N*N + 3*N + BDSPAC ) THEN
 | |
|                   LDWRKR = LDA
 | |
|                ELSE
 | |
|                   LDWRKR = ( LWORK - N*N - 3*N - BDSPAC ) / N
 | |
|                END IF
 | |
|                ITAU = IR + LDWRKR*N
 | |
|                NWORK = ITAU + N
 | |
| *
 | |
| *              Compute A=Q*R
 | |
| *              Workspace: need   N*N [R] + N [tau] + N    [work]
 | |
| *              Workspace: prefer N*N [R] + N [tau] + N*NB [work]
 | |
| *
 | |
|                CALL SGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
 | |
|      $                      LWORK - NWORK + 1, IERR )
 | |
| *
 | |
| *              Copy R to WORK(IR), zeroing out below it
 | |
| *
 | |
|                CALL SLACPY( 'U', N, N, A, LDA, WORK( IR ), LDWRKR )
 | |
|                CALL SLASET( 'L', N - 1, N - 1, ZERO, ZERO, WORK(IR+1),
 | |
|      $                      LDWRKR )
 | |
| *
 | |
| *              Generate Q in A
 | |
| *              Workspace: need   N*N [R] + N [tau] + N    [work]
 | |
| *              Workspace: prefer N*N [R] + N [tau] + N*NB [work]
 | |
| *
 | |
|                CALL SORGQR( M, N, N, A, LDA, WORK( ITAU ),
 | |
|      $                      WORK( NWORK ), LWORK - NWORK + 1, IERR )
 | |
|                IE = ITAU
 | |
|                ITAUQ = IE + N
 | |
|                ITAUP = ITAUQ + N
 | |
|                NWORK = ITAUP + N
 | |
| *
 | |
| *              Bidiagonalize R in WORK(IR)
 | |
| *              Workspace: need   N*N [R] + 3*N [e, tauq, taup] + N      [work]
 | |
| *              Workspace: prefer N*N [R] + 3*N [e, tauq, taup] + 2*N*NB [work]
 | |
| *
 | |
|                CALL SGEBRD( N, N, WORK( IR ), LDWRKR, S, WORK( IE ),
 | |
|      $                      WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
 | |
|      $                      LWORK - NWORK + 1, IERR )
 | |
| *
 | |
| *              WORK(IU) is N by N
 | |
| *
 | |
|                IU = NWORK
 | |
|                NWORK = IU + N*N
 | |
| *
 | |
| *              Perform bidiagonal SVD, computing left singular vectors
 | |
| *              of bidiagonal matrix in WORK(IU) and computing right
 | |
| *              singular vectors of bidiagonal matrix in VT
 | |
| *              Workspace: need   N*N [R] + 3*N [e, tauq, taup] + N*N [U] + BDSPAC
 | |
| *
 | |
|                CALL SBDSDC( 'U', 'I', N, S, WORK( IE ), WORK( IU ), N,
 | |
|      $                      VT, LDVT, DUM, IDUM, WORK( NWORK ), IWORK,
 | |
|      $                      INFO )
 | |
| *
 | |
| *              Overwrite WORK(IU) by left singular vectors of R
 | |
| *              and VT by right singular vectors of R
 | |
| *              Workspace: need   N*N [R] + 3*N [e, tauq, taup] + N*N [U] + N    [work]
 | |
| *              Workspace: prefer N*N [R] + 3*N [e, tauq, taup] + N*N [U] + N*NB [work]
 | |
| *
 | |
|                CALL SORMBR( 'Q', 'L', 'N', N, N, N, WORK( IR ), LDWRKR,
 | |
|      $                      WORK( ITAUQ ), WORK( IU ), N, WORK( NWORK ),
 | |
|      $                      LWORK - NWORK + 1, IERR )
 | |
|                CALL SORMBR( 'P', 'R', 'T', N, N, N, WORK( IR ), LDWRKR,
 | |
|      $                      WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
 | |
|      $                      LWORK - NWORK + 1, IERR )
 | |
| *
 | |
| *              Multiply Q in A by left singular vectors of R in
 | |
| *              WORK(IU), storing result in WORK(IR) and copying to A
 | |
| *              Workspace: need   N*N [R] + 3*N [e, tauq, taup] + N*N [U]
 | |
| *              Workspace: prefer M*N [R] + 3*N [e, tauq, taup] + N*N [U]
 | |
| *
 | |
|                DO 10 I = 1, M, LDWRKR
 | |
|                   CHUNK = MIN( M - I + 1, LDWRKR )
 | |
|                   CALL SGEMM( 'N', 'N', CHUNK, N, N, ONE, A( I, 1 ),
 | |
|      $                        LDA, WORK( IU ), N, ZERO, WORK( IR ),
 | |
|      $                        LDWRKR )
 | |
|                   CALL SLACPY( 'F', CHUNK, N, WORK( IR ), LDWRKR,
 | |
|      $                         A( I, 1 ), LDA )
 | |
|    10          CONTINUE
 | |
| *
 | |
|             ELSE IF( WNTQS ) THEN
 | |
| *
 | |
| *              Path 3 (M >> N, JOBZ='S')
 | |
| *              N left singular vectors to be computed in U and
 | |
| *              N right singular vectors to be computed in VT
 | |
| *
 | |
|                IR = 1
 | |
| *
 | |
| *              WORK(IR) is N by N
 | |
| *
 | |
|                LDWRKR = N
 | |
|                ITAU = IR + LDWRKR*N
 | |
|                NWORK = ITAU + N
 | |
| *
 | |
| *              Compute A=Q*R
 | |
| *              Workspace: need   N*N [R] + N [tau] + N    [work]
 | |
| *              Workspace: prefer N*N [R] + N [tau] + N*NB [work]
 | |
| *
 | |
|                CALL SGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
 | |
|      $                      LWORK - NWORK + 1, IERR )
 | |
| *
 | |
| *              Copy R to WORK(IR), zeroing out below it
 | |
| *
 | |
|                CALL SLACPY( 'U', N, N, A, LDA, WORK( IR ), LDWRKR )
 | |
|                CALL SLASET( 'L', N - 1, N - 1, ZERO, ZERO, WORK(IR+1),
 | |
|      $                      LDWRKR )
 | |
| *
 | |
| *              Generate Q in A
 | |
| *              Workspace: need   N*N [R] + N [tau] + N    [work]
 | |
| *              Workspace: prefer N*N [R] + N [tau] + N*NB [work]
 | |
| *
 | |
|                CALL SORGQR( M, N, N, A, LDA, WORK( ITAU ),
 | |
|      $                      WORK( NWORK ), LWORK - NWORK + 1, IERR )
 | |
|                IE = ITAU
 | |
|                ITAUQ = IE + N
 | |
|                ITAUP = ITAUQ + N
 | |
|                NWORK = ITAUP + N
 | |
| *
 | |
| *              Bidiagonalize R in WORK(IR)
 | |
| *              Workspace: need   N*N [R] + 3*N [e, tauq, taup] + N      [work]
 | |
| *              Workspace: prefer N*N [R] + 3*N [e, tauq, taup] + 2*N*NB [work]
 | |
| *
 | |
|                CALL SGEBRD( N, N, WORK( IR ), LDWRKR, S, WORK( IE ),
 | |
|      $                      WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
 | |
|      $                      LWORK - NWORK + 1, IERR )
 | |
| *
 | |
| *              Perform bidiagonal SVD, computing left singular vectors
 | |
| *              of bidiagoal matrix in U and computing right singular
 | |
| *              vectors of bidiagonal matrix in VT
 | |
| *              Workspace: need   N*N [R] + 3*N [e, tauq, taup] + BDSPAC
 | |
| *
 | |
|                CALL SBDSDC( 'U', 'I', N, S, WORK( IE ), U, LDU, VT,
 | |
|      $                      LDVT, DUM, IDUM, WORK( NWORK ), IWORK,
 | |
|      $                      INFO )
 | |
| *
 | |
| *              Overwrite U by left singular vectors of R and VT
 | |
| *              by right singular vectors of R
 | |
| *              Workspace: need   N*N [R] + 3*N [e, tauq, taup] + N    [work]
 | |
| *              Workspace: prefer N*N [R] + 3*N [e, tauq, taup] + N*NB [work]
 | |
| *
 | |
|                CALL SORMBR( 'Q', 'L', 'N', N, N, N, WORK( IR ), LDWRKR,
 | |
|      $                      WORK( ITAUQ ), U, LDU, WORK( NWORK ),
 | |
|      $                      LWORK - NWORK + 1, IERR )
 | |
| *
 | |
|                CALL SORMBR( 'P', 'R', 'T', N, N, N, WORK( IR ), LDWRKR,
 | |
|      $                      WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
 | |
|      $                      LWORK - NWORK + 1, IERR )
 | |
| *
 | |
| *              Multiply Q in A by left singular vectors of R in
 | |
| *              WORK(IR), storing result in U
 | |
| *              Workspace: need   N*N [R]
 | |
| *
 | |
|                CALL SLACPY( 'F', N, N, U, LDU, WORK( IR ), LDWRKR )
 | |
|                CALL SGEMM( 'N', 'N', M, N, N, ONE, A, LDA, WORK( IR ),
 | |
|      $                     LDWRKR, ZERO, U, LDU )
 | |
| *
 | |
|             ELSE IF( WNTQA ) THEN
 | |
| *
 | |
| *              Path 4 (M >> N, JOBZ='A')
 | |
| *              M left singular vectors to be computed in U and
 | |
| *              N right singular vectors to be computed in VT
 | |
| *
 | |
|                IU = 1
 | |
| *
 | |
| *              WORK(IU) is N by N
 | |
| *
 | |
|                LDWRKU = N
 | |
|                ITAU = IU + LDWRKU*N
 | |
|                NWORK = ITAU + N
 | |
| *
 | |
| *              Compute A=Q*R, copying result to U
 | |
| *              Workspace: need   N*N [U] + N [tau] + N    [work]
 | |
| *              Workspace: prefer N*N [U] + N [tau] + N*NB [work]
 | |
| *
 | |
|                CALL SGEQRF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
 | |
|      $                      LWORK - NWORK + 1, IERR )
 | |
|                CALL SLACPY( 'L', M, N, A, LDA, U, LDU )
 | |
| *
 | |
| *              Generate Q in U
 | |
| *              Workspace: need   N*N [U] + N [tau] + M    [work]
 | |
| *              Workspace: prefer N*N [U] + N [tau] + M*NB [work]
 | |
|                CALL SORGQR( M, M, N, U, LDU, WORK( ITAU ),
 | |
|      $                      WORK( NWORK ), LWORK - NWORK + 1, IERR )
 | |
| *
 | |
| *              Produce R in A, zeroing out other entries
 | |
| *
 | |
|                CALL SLASET( 'L', N-1, N-1, ZERO, ZERO, A( 2, 1 ), LDA )
 | |
|                IE = ITAU
 | |
|                ITAUQ = IE + N
 | |
|                ITAUP = ITAUQ + N
 | |
|                NWORK = ITAUP + N
 | |
| *
 | |
| *              Bidiagonalize R in A
 | |
| *              Workspace: need   N*N [U] + 3*N [e, tauq, taup] + N      [work]
 | |
| *              Workspace: prefer N*N [U] + 3*N [e, tauq, taup] + 2*N*NB [work]
 | |
| *
 | |
|                CALL SGEBRD( N, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
 | |
|      $                      WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
 | |
|      $                      IERR )
 | |
| *
 | |
| *              Perform bidiagonal SVD, computing left singular vectors
 | |
| *              of bidiagonal matrix in WORK(IU) and computing right
 | |
| *              singular vectors of bidiagonal matrix in VT
 | |
| *              Workspace: need   N*N [U] + 3*N [e, tauq, taup] + BDSPAC
 | |
| *
 | |
|                CALL SBDSDC( 'U', 'I', N, S, WORK( IE ), WORK( IU ), N,
 | |
|      $                      VT, LDVT, DUM, IDUM, WORK( NWORK ), IWORK,
 | |
|      $                      INFO )
 | |
| *
 | |
| *              Overwrite WORK(IU) by left singular vectors of R and VT
 | |
| *              by right singular vectors of R
 | |
| *              Workspace: need   N*N [U] + 3*N [e, tauq, taup] + N    [work]
 | |
| *              Workspace: prefer N*N [U] + 3*N [e, tauq, taup] + N*NB [work]
 | |
| *
 | |
|                CALL SORMBR( 'Q', 'L', 'N', N, N, N, A, LDA,
 | |
|      $                      WORK( ITAUQ ), WORK( IU ), LDWRKU,
 | |
|      $                      WORK( NWORK ), LWORK - NWORK + 1, IERR )
 | |
|                CALL SORMBR( 'P', 'R', 'T', N, N, N, A, LDA,
 | |
|      $                      WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
 | |
|      $                      LWORK - NWORK + 1, IERR )
 | |
| *
 | |
| *              Multiply Q in U by left singular vectors of R in
 | |
| *              WORK(IU), storing result in A
 | |
| *              Workspace: need   N*N [U]
 | |
| *
 | |
|                CALL SGEMM( 'N', 'N', M, N, N, ONE, U, LDU, WORK( IU ),
 | |
|      $                     LDWRKU, ZERO, A, LDA )
 | |
| *
 | |
| *              Copy left singular vectors of A from A to U
 | |
| *
 | |
|                CALL SLACPY( 'F', M, N, A, LDA, U, LDU )
 | |
| *
 | |
|             END IF
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           M .LT. MNTHR
 | |
| *
 | |
| *           Path 5 (M >= N, but not much larger)
 | |
| *           Reduce to bidiagonal form without QR decomposition
 | |
| *
 | |
|             IE = 1
 | |
|             ITAUQ = IE + N
 | |
|             ITAUP = ITAUQ + N
 | |
|             NWORK = ITAUP + N
 | |
| *
 | |
| *           Bidiagonalize A
 | |
| *           Workspace: need   3*N [e, tauq, taup] + M        [work]
 | |
| *           Workspace: prefer 3*N [e, tauq, taup] + (M+N)*NB [work]
 | |
| *
 | |
|             CALL SGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
 | |
|      $                   WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
 | |
|      $                   IERR )
 | |
|             IF( WNTQN ) THEN
 | |
| *
 | |
| *              Path 5n (M >= N, JOBZ='N')
 | |
| *              Perform bidiagonal SVD, only computing singular values
 | |
| *              Workspace: need   3*N [e, tauq, taup] + BDSPAC
 | |
| *
 | |
|                CALL SBDSDC( 'U', 'N', N, S, WORK( IE ), DUM, 1, DUM, 1,
 | |
|      $                      DUM, IDUM, WORK( NWORK ), IWORK, INFO )
 | |
|             ELSE IF( WNTQO ) THEN
 | |
| *              Path 5o (M >= N, JOBZ='O')
 | |
|                IU = NWORK
 | |
|                IF( LWORK .GE. M*N + 3*N + BDSPAC ) THEN
 | |
| *
 | |
| *                 WORK( IU ) is M by N
 | |
| *
 | |
|                   LDWRKU = M
 | |
|                   NWORK = IU + LDWRKU*N
 | |
|                   CALL SLASET( 'F', M, N, ZERO, ZERO, WORK( IU ),
 | |
|      $                         LDWRKU )
 | |
| *                 IR is unused; silence compile warnings
 | |
|                   IR = -1
 | |
|                ELSE
 | |
| *
 | |
| *                 WORK( IU ) is N by N
 | |
| *
 | |
|                   LDWRKU = N
 | |
|                   NWORK = IU + LDWRKU*N
 | |
| *
 | |
| *                 WORK(IR) is LDWRKR by N
 | |
| *
 | |
|                   IR = NWORK
 | |
|                   LDWRKR = ( LWORK - N*N - 3*N ) / N
 | |
|                END IF
 | |
|                NWORK = IU + LDWRKU*N
 | |
| *
 | |
| *              Perform bidiagonal SVD, computing left singular vectors
 | |
| *              of bidiagonal matrix in WORK(IU) and computing right
 | |
| *              singular vectors of bidiagonal matrix in VT
 | |
| *              Workspace: need   3*N [e, tauq, taup] + N*N [U] + BDSPAC
 | |
| *
 | |
|                CALL SBDSDC( 'U', 'I', N, S, WORK( IE ), WORK( IU ),
 | |
|      $                      LDWRKU, VT, LDVT, DUM, IDUM, WORK( NWORK ),
 | |
|      $                      IWORK, INFO )
 | |
| *
 | |
| *              Overwrite VT by right singular vectors of A
 | |
| *              Workspace: need   3*N [e, tauq, taup] + N*N [U] + N    [work]
 | |
| *              Workspace: prefer 3*N [e, tauq, taup] + N*N [U] + N*NB [work]
 | |
| *
 | |
|                CALL SORMBR( 'P', 'R', 'T', N, N, N, A, LDA,
 | |
|      $                      WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
 | |
|      $                      LWORK - NWORK + 1, IERR )
 | |
| *
 | |
|                IF( LWORK .GE. M*N + 3*N + BDSPAC ) THEN
 | |
| *
 | |
| *                 Path 5o-fast
 | |
| *                 Overwrite WORK(IU) by left singular vectors of A
 | |
| *                 Workspace: need   3*N [e, tauq, taup] + M*N [U] + N    [work]
 | |
| *                 Workspace: prefer 3*N [e, tauq, taup] + M*N [U] + N*NB [work]
 | |
| *
 | |
|                   CALL SORMBR( 'Q', 'L', 'N', M, N, N, A, LDA,
 | |
|      $                         WORK( ITAUQ ), WORK( IU ), LDWRKU,
 | |
|      $                         WORK( NWORK ), LWORK - NWORK + 1, IERR )
 | |
| *
 | |
| *                 Copy left singular vectors of A from WORK(IU) to A
 | |
| *
 | |
|                   CALL SLACPY( 'F', M, N, WORK( IU ), LDWRKU, A, LDA )
 | |
|                ELSE
 | |
| *
 | |
| *                 Path 5o-slow
 | |
| *                 Generate Q in A
 | |
| *                 Workspace: need   3*N [e, tauq, taup] + N*N [U] + N    [work]
 | |
| *                 Workspace: prefer 3*N [e, tauq, taup] + N*N [U] + N*NB [work]
 | |
| *
 | |
|                   CALL SORGBR( 'Q', M, N, N, A, LDA, WORK( ITAUQ ),
 | |
|      $                         WORK( NWORK ), LWORK - NWORK + 1, IERR )
 | |
| *
 | |
| *                 Multiply Q in A by left singular vectors of
 | |
| *                 bidiagonal matrix in WORK(IU), storing result in
 | |
| *                 WORK(IR) and copying to A
 | |
| *                 Workspace: need   3*N [e, tauq, taup] + N*N [U] + NB*N [R]
 | |
| *                 Workspace: prefer 3*N [e, tauq, taup] + N*N [U] + M*N  [R]
 | |
| *
 | |
|                   DO 20 I = 1, M, LDWRKR
 | |
|                      CHUNK = MIN( M - I + 1, LDWRKR )
 | |
|                      CALL SGEMM( 'N', 'N', CHUNK, N, N, ONE, A( I, 1 ),
 | |
|      $                           LDA, WORK( IU ), LDWRKU, ZERO,
 | |
|      $                           WORK( IR ), LDWRKR )
 | |
|                      CALL SLACPY( 'F', CHUNK, N, WORK( IR ), LDWRKR,
 | |
|      $                            A( I, 1 ), LDA )
 | |
|    20             CONTINUE
 | |
|                END IF
 | |
| *
 | |
|             ELSE IF( WNTQS ) THEN
 | |
| *
 | |
| *              Path 5s (M >= N, JOBZ='S')
 | |
| *              Perform bidiagonal SVD, computing left singular vectors
 | |
| *              of bidiagonal matrix in U and computing right singular
 | |
| *              vectors of bidiagonal matrix in VT
 | |
| *              Workspace: need   3*N [e, tauq, taup] + BDSPAC
 | |
| *
 | |
|                CALL SLASET( 'F', M, N, ZERO, ZERO, U, LDU )
 | |
|                CALL SBDSDC( 'U', 'I', N, S, WORK( IE ), U, LDU, VT,
 | |
|      $                      LDVT, DUM, IDUM, WORK( NWORK ), IWORK,
 | |
|      $                      INFO )
 | |
| *
 | |
| *              Overwrite U by left singular vectors of A and VT
 | |
| *              by right singular vectors of A
 | |
| *              Workspace: need   3*N [e, tauq, taup] + N    [work]
 | |
| *              Workspace: prefer 3*N [e, tauq, taup] + N*NB [work]
 | |
| *
 | |
|                CALL SORMBR( 'Q', 'L', 'N', M, N, N, A, LDA,
 | |
|      $                      WORK( ITAUQ ), U, LDU, WORK( NWORK ),
 | |
|      $                      LWORK - NWORK + 1, IERR )
 | |
|                CALL SORMBR( 'P', 'R', 'T', N, N, N, A, LDA,
 | |
|      $                      WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
 | |
|      $                      LWORK - NWORK + 1, IERR )
 | |
|             ELSE IF( WNTQA ) THEN
 | |
| *
 | |
| *              Path 5a (M >= N, JOBZ='A')
 | |
| *              Perform bidiagonal SVD, computing left singular vectors
 | |
| *              of bidiagonal matrix in U and computing right singular
 | |
| *              vectors of bidiagonal matrix in VT
 | |
| *              Workspace: need   3*N [e, tauq, taup] + BDSPAC
 | |
| *
 | |
|                CALL SLASET( 'F', M, M, ZERO, ZERO, U, LDU )
 | |
|                CALL SBDSDC( 'U', 'I', N, S, WORK( IE ), U, LDU, VT,
 | |
|      $                      LDVT, DUM, IDUM, WORK( NWORK ), IWORK,
 | |
|      $                      INFO )
 | |
| *
 | |
| *              Set the right corner of U to identity matrix
 | |
| *
 | |
|                IF( M.GT.N ) THEN
 | |
|                   CALL SLASET( 'F', M - N, M - N, ZERO, ONE, U(N+1,N+1),
 | |
|      $                         LDU )
 | |
|                END IF
 | |
| *
 | |
| *              Overwrite U by left singular vectors of A and VT
 | |
| *              by right singular vectors of A
 | |
| *              Workspace: need   3*N [e, tauq, taup] + M    [work]
 | |
| *              Workspace: prefer 3*N [e, tauq, taup] + M*NB [work]
 | |
| *
 | |
|                CALL SORMBR( 'Q', 'L', 'N', M, M, N, A, LDA,
 | |
|      $                      WORK( ITAUQ ), U, LDU, WORK( NWORK ),
 | |
|      $                      LWORK - NWORK + 1, IERR )
 | |
|                CALL SORMBR( 'P', 'R', 'T', N, N, M, A, LDA,
 | |
|      $                      WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
 | |
|      $                      LWORK - NWORK + 1, IERR )
 | |
|             END IF
 | |
| *
 | |
|          END IF
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        A has more columns than rows. If A has sufficiently more
 | |
| *        columns than rows, first reduce using the LQ decomposition (if
 | |
| *        sufficient workspace available)
 | |
| *
 | |
|          IF( N.GE.MNTHR ) THEN
 | |
| *
 | |
|             IF( WNTQN ) THEN
 | |
| *
 | |
| *              Path 1t (N >> M, JOBZ='N')
 | |
| *              No singular vectors to be computed
 | |
| *
 | |
|                ITAU = 1
 | |
|                NWORK = ITAU + M
 | |
| *
 | |
| *              Compute A=L*Q
 | |
| *              Workspace: need   M [tau] + M [work]
 | |
| *              Workspace: prefer M [tau] + M*NB [work]
 | |
| *
 | |
|                CALL SGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
 | |
|      $                      LWORK - NWORK + 1, IERR )
 | |
| *
 | |
| *              Zero out above L
 | |
| *
 | |
|                CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, A( 1, 2 ), LDA )
 | |
|                IE = 1
 | |
|                ITAUQ = IE + M
 | |
|                ITAUP = ITAUQ + M
 | |
|                NWORK = ITAUP + M
 | |
| *
 | |
| *              Bidiagonalize L in A
 | |
| *              Workspace: need   3*M [e, tauq, taup] + M      [work]
 | |
| *              Workspace: prefer 3*M [e, tauq, taup] + 2*M*NB [work]
 | |
| *
 | |
|                CALL SGEBRD( M, M, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
 | |
|      $                      WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
 | |
|      $                      IERR )
 | |
|                NWORK = IE + M
 | |
| *
 | |
| *              Perform bidiagonal SVD, computing singular values only
 | |
| *              Workspace: need   M [e] + BDSPAC
 | |
| *
 | |
|                CALL SBDSDC( 'U', 'N', M, S, WORK( IE ), DUM, 1, DUM, 1,
 | |
|      $                      DUM, IDUM, WORK( NWORK ), IWORK, INFO )
 | |
| *
 | |
|             ELSE IF( WNTQO ) THEN
 | |
| *
 | |
| *              Path 2t (N >> M, JOBZ='O')
 | |
| *              M right singular vectors to be overwritten on A and
 | |
| *              M left singular vectors to be computed in U
 | |
| *
 | |
|                IVT = 1
 | |
| *
 | |
| *              WORK(IVT) is M by M
 | |
| *              WORK(IL)  is M by M; it is later resized to M by chunk for gemm
 | |
| *
 | |
|                IL = IVT + M*M
 | |
|                IF( LWORK .GE. M*N + M*M + 3*M + BDSPAC ) THEN
 | |
|                   LDWRKL = M
 | |
|                   CHUNK = N
 | |
|                ELSE
 | |
|                   LDWRKL = M
 | |
|                   CHUNK = ( LWORK - M*M ) / M
 | |
|                END IF
 | |
|                ITAU = IL + LDWRKL*M
 | |
|                NWORK = ITAU + M
 | |
| *
 | |
| *              Compute A=L*Q
 | |
| *              Workspace: need   M*M [VT] + M*M [L] + M [tau] + M    [work]
 | |
| *              Workspace: prefer M*M [VT] + M*M [L] + M [tau] + M*NB [work]
 | |
| *
 | |
|                CALL SGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
 | |
|      $                      LWORK - NWORK + 1, IERR )
 | |
| *
 | |
| *              Copy L to WORK(IL), zeroing about above it
 | |
| *
 | |
|                CALL SLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWRKL )
 | |
|                CALL SLASET( 'U', M - 1, M - 1, ZERO, ZERO,
 | |
|      $                      WORK( IL + LDWRKL ), LDWRKL )
 | |
| *
 | |
| *              Generate Q in A
 | |
| *              Workspace: need   M*M [VT] + M*M [L] + M [tau] + M    [work]
 | |
| *              Workspace: prefer M*M [VT] + M*M [L] + M [tau] + M*NB [work]
 | |
| *
 | |
|                CALL SORGLQ( M, N, M, A, LDA, WORK( ITAU ),
 | |
|      $                      WORK( NWORK ), LWORK - NWORK + 1, IERR )
 | |
|                IE = ITAU
 | |
|                ITAUQ = IE + M
 | |
|                ITAUP = ITAUQ + M
 | |
|                NWORK = ITAUP + M
 | |
| *
 | |
| *              Bidiagonalize L in WORK(IL)
 | |
| *              Workspace: need   M*M [VT] + M*M [L] + 3*M [e, tauq, taup] + M      [work]
 | |
| *              Workspace: prefer M*M [VT] + M*M [L] + 3*M [e, tauq, taup] + 2*M*NB [work]
 | |
| *
 | |
|                CALL SGEBRD( M, M, WORK( IL ), LDWRKL, S, WORK( IE ),
 | |
|      $                      WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
 | |
|      $                      LWORK - NWORK + 1, IERR )
 | |
| *
 | |
| *              Perform bidiagonal SVD, computing left singular vectors
 | |
| *              of bidiagonal matrix in U, and computing right singular
 | |
| *              vectors of bidiagonal matrix in WORK(IVT)
 | |
| *              Workspace: need   M*M [VT] + M*M [L] + 3*M [e, tauq, taup] + BDSPAC
 | |
| *
 | |
|                CALL SBDSDC( 'U', 'I', M, S, WORK( IE ), U, LDU,
 | |
|      $                      WORK( IVT ), M, DUM, IDUM, WORK( NWORK ),
 | |
|      $                      IWORK, INFO )
 | |
| *
 | |
| *              Overwrite U by left singular vectors of L and WORK(IVT)
 | |
| *              by right singular vectors of L
 | |
| *              Workspace: need   M*M [VT] + M*M [L] + 3*M [e, tauq, taup] + M    [work]
 | |
| *              Workspace: prefer M*M [VT] + M*M [L] + 3*M [e, tauq, taup] + M*NB [work]
 | |
| *
 | |
|                CALL SORMBR( 'Q', 'L', 'N', M, M, M, WORK( IL ), LDWRKL,
 | |
|      $                      WORK( ITAUQ ), U, LDU, WORK( NWORK ),
 | |
|      $                      LWORK - NWORK + 1, IERR )
 | |
|                CALL SORMBR( 'P', 'R', 'T', M, M, M, WORK( IL ), LDWRKL,
 | |
|      $                      WORK( ITAUP ), WORK( IVT ), M,
 | |
|      $                      WORK( NWORK ), LWORK - NWORK + 1, IERR )
 | |
| *
 | |
| *              Multiply right singular vectors of L in WORK(IVT) by Q
 | |
| *              in A, storing result in WORK(IL) and copying to A
 | |
| *              Workspace: need   M*M [VT] + M*M [L]
 | |
| *              Workspace: prefer M*M [VT] + M*N [L]
 | |
| *              At this point, L is resized as M by chunk.
 | |
| *
 | |
|                DO 30 I = 1, N, CHUNK
 | |
|                   BLK = MIN( N - I + 1, CHUNK )
 | |
|                   CALL SGEMM( 'N', 'N', M, BLK, M, ONE, WORK( IVT ), M,
 | |
|      $                        A( 1, I ), LDA, ZERO, WORK( IL ), LDWRKL )
 | |
|                   CALL SLACPY( 'F', M, BLK, WORK( IL ), LDWRKL,
 | |
|      $                         A( 1, I ), LDA )
 | |
|    30          CONTINUE
 | |
| *
 | |
|             ELSE IF( WNTQS ) THEN
 | |
| *
 | |
| *              Path 3t (N >> M, JOBZ='S')
 | |
| *              M right singular vectors to be computed in VT and
 | |
| *              M left singular vectors to be computed in U
 | |
| *
 | |
|                IL = 1
 | |
| *
 | |
| *              WORK(IL) is M by M
 | |
| *
 | |
|                LDWRKL = M
 | |
|                ITAU = IL + LDWRKL*M
 | |
|                NWORK = ITAU + M
 | |
| *
 | |
| *              Compute A=L*Q
 | |
| *              Workspace: need   M*M [L] + M [tau] + M    [work]
 | |
| *              Workspace: prefer M*M [L] + M [tau] + M*NB [work]
 | |
| *
 | |
|                CALL SGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
 | |
|      $                      LWORK - NWORK + 1, IERR )
 | |
| *
 | |
| *              Copy L to WORK(IL), zeroing out above it
 | |
| *
 | |
|                CALL SLACPY( 'L', M, M, A, LDA, WORK( IL ), LDWRKL )
 | |
|                CALL SLASET( 'U', M - 1, M - 1, ZERO, ZERO,
 | |
|      $                      WORK( IL + LDWRKL ), LDWRKL )
 | |
| *
 | |
| *              Generate Q in A
 | |
| *              Workspace: need   M*M [L] + M [tau] + M    [work]
 | |
| *              Workspace: prefer M*M [L] + M [tau] + M*NB [work]
 | |
| *
 | |
|                CALL SORGLQ( M, N, M, A, LDA, WORK( ITAU ),
 | |
|      $                      WORK( NWORK ), LWORK - NWORK + 1, IERR )
 | |
|                IE = ITAU
 | |
|                ITAUQ = IE + M
 | |
|                ITAUP = ITAUQ + M
 | |
|                NWORK = ITAUP + M
 | |
| *
 | |
| *              Bidiagonalize L in WORK(IU).
 | |
| *              Workspace: need   M*M [L] + 3*M [e, tauq, taup] + M      [work]
 | |
| *              Workspace: prefer M*M [L] + 3*M [e, tauq, taup] + 2*M*NB [work]
 | |
| *
 | |
|                CALL SGEBRD( M, M, WORK( IL ), LDWRKL, S, WORK( IE ),
 | |
|      $                      WORK( ITAUQ ), WORK( ITAUP ), WORK( NWORK ),
 | |
|      $                      LWORK - NWORK + 1, IERR )
 | |
| *
 | |
| *              Perform bidiagonal SVD, computing left singular vectors
 | |
| *              of bidiagonal matrix in U and computing right singular
 | |
| *              vectors of bidiagonal matrix in VT
 | |
| *              Workspace: need   M*M [L] + 3*M [e, tauq, taup] + BDSPAC
 | |
| *
 | |
|                CALL SBDSDC( 'U', 'I', M, S, WORK( IE ), U, LDU, VT,
 | |
|      $                      LDVT, DUM, IDUM, WORK( NWORK ), IWORK,
 | |
|      $                      INFO )
 | |
| *
 | |
| *              Overwrite U by left singular vectors of L and VT
 | |
| *              by right singular vectors of L
 | |
| *              Workspace: need   M*M [L] + 3*M [e, tauq, taup] + M    [work]
 | |
| *              Workspace: prefer M*M [L] + 3*M [e, tauq, taup] + M*NB [work]
 | |
| *
 | |
|                CALL SORMBR( 'Q', 'L', 'N', M, M, M, WORK( IL ), LDWRKL,
 | |
|      $                      WORK( ITAUQ ), U, LDU, WORK( NWORK ),
 | |
|      $                      LWORK - NWORK + 1, IERR )
 | |
|                CALL SORMBR( 'P', 'R', 'T', M, M, M, WORK( IL ), LDWRKL,
 | |
|      $                      WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
 | |
|      $                      LWORK - NWORK + 1, IERR )
 | |
| *
 | |
| *              Multiply right singular vectors of L in WORK(IL) by
 | |
| *              Q in A, storing result in VT
 | |
| *              Workspace: need   M*M [L]
 | |
| *
 | |
|                CALL SLACPY( 'F', M, M, VT, LDVT, WORK( IL ), LDWRKL )
 | |
|                CALL SGEMM( 'N', 'N', M, N, M, ONE, WORK( IL ), LDWRKL,
 | |
|      $                     A, LDA, ZERO, VT, LDVT )
 | |
| *
 | |
|             ELSE IF( WNTQA ) THEN
 | |
| *
 | |
| *              Path 4t (N >> M, JOBZ='A')
 | |
| *              N right singular vectors to be computed in VT and
 | |
| *              M left singular vectors to be computed in U
 | |
| *
 | |
|                IVT = 1
 | |
| *
 | |
| *              WORK(IVT) is M by M
 | |
| *
 | |
|                LDWKVT = M
 | |
|                ITAU = IVT + LDWKVT*M
 | |
|                NWORK = ITAU + M
 | |
| *
 | |
| *              Compute A=L*Q, copying result to VT
 | |
| *              Workspace: need   M*M [VT] + M [tau] + M    [work]
 | |
| *              Workspace: prefer M*M [VT] + M [tau] + M*NB [work]
 | |
| *
 | |
|                CALL SGELQF( M, N, A, LDA, WORK( ITAU ), WORK( NWORK ),
 | |
|      $                      LWORK - NWORK + 1, IERR )
 | |
|                CALL SLACPY( 'U', M, N, A, LDA, VT, LDVT )
 | |
| *
 | |
| *              Generate Q in VT
 | |
| *              Workspace: need   M*M [VT] + M [tau] + N    [work]
 | |
| *              Workspace: prefer M*M [VT] + M [tau] + N*NB [work]
 | |
| *
 | |
|                CALL SORGLQ( N, N, M, VT, LDVT, WORK( ITAU ),
 | |
|      $                      WORK( NWORK ), LWORK - NWORK + 1, IERR )
 | |
| *
 | |
| *              Produce L in A, zeroing out other entries
 | |
| *
 | |
|                CALL SLASET( 'U', M-1, M-1, ZERO, ZERO, A( 1, 2 ), LDA )
 | |
|                IE = ITAU
 | |
|                ITAUQ = IE + M
 | |
|                ITAUP = ITAUQ + M
 | |
|                NWORK = ITAUP + M
 | |
| *
 | |
| *              Bidiagonalize L in A
 | |
| *              Workspace: need   M*M [VT] + 3*M [e, tauq, taup] + M      [work]
 | |
| *              Workspace: prefer M*M [VT] + 3*M [e, tauq, taup] + 2*M*NB [work]
 | |
| *
 | |
|                CALL SGEBRD( M, M, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
 | |
|      $                      WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
 | |
|      $                      IERR )
 | |
| *
 | |
| *              Perform bidiagonal SVD, computing left singular vectors
 | |
| *              of bidiagonal matrix in U and computing right singular
 | |
| *              vectors of bidiagonal matrix in WORK(IVT)
 | |
| *              Workspace: need   M*M [VT] + 3*M [e, tauq, taup] + BDSPAC
 | |
| *
 | |
|                CALL SBDSDC( 'U', 'I', M, S, WORK( IE ), U, LDU,
 | |
|      $                      WORK( IVT ), LDWKVT, DUM, IDUM,
 | |
|      $                      WORK( NWORK ), IWORK, INFO )
 | |
| *
 | |
| *              Overwrite U by left singular vectors of L and WORK(IVT)
 | |
| *              by right singular vectors of L
 | |
| *              Workspace: need   M*M [VT] + 3*M [e, tauq, taup]+ M    [work]
 | |
| *              Workspace: prefer M*M [VT] + 3*M [e, tauq, taup]+ M*NB [work]
 | |
| *
 | |
|                CALL SORMBR( 'Q', 'L', 'N', M, M, M, A, LDA,
 | |
|      $                      WORK( ITAUQ ), U, LDU, WORK( NWORK ),
 | |
|      $                      LWORK - NWORK + 1, IERR )
 | |
|                CALL SORMBR( 'P', 'R', 'T', M, M, M, A, LDA,
 | |
|      $                      WORK( ITAUP ), WORK( IVT ), LDWKVT,
 | |
|      $                      WORK( NWORK ), LWORK - NWORK + 1, IERR )
 | |
| *
 | |
| *              Multiply right singular vectors of L in WORK(IVT) by
 | |
| *              Q in VT, storing result in A
 | |
| *              Workspace: need   M*M [VT]
 | |
| *
 | |
|                CALL SGEMM( 'N', 'N', M, N, M, ONE, WORK( IVT ), LDWKVT,
 | |
|      $                     VT, LDVT, ZERO, A, LDA )
 | |
| *
 | |
| *              Copy right singular vectors of A from A to VT
 | |
| *
 | |
|                CALL SLACPY( 'F', M, N, A, LDA, VT, LDVT )
 | |
| *
 | |
|             END IF
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           N .LT. MNTHR
 | |
| *
 | |
| *           Path 5t (N > M, but not much larger)
 | |
| *           Reduce to bidiagonal form without LQ decomposition
 | |
| *
 | |
|             IE = 1
 | |
|             ITAUQ = IE + M
 | |
|             ITAUP = ITAUQ + M
 | |
|             NWORK = ITAUP + M
 | |
| *
 | |
| *           Bidiagonalize A
 | |
| *           Workspace: need   3*M [e, tauq, taup] + N        [work]
 | |
| *           Workspace: prefer 3*M [e, tauq, taup] + (M+N)*NB [work]
 | |
| *
 | |
|             CALL SGEBRD( M, N, A, LDA, S, WORK( IE ), WORK( ITAUQ ),
 | |
|      $                   WORK( ITAUP ), WORK( NWORK ), LWORK-NWORK+1,
 | |
|      $                   IERR )
 | |
|             IF( WNTQN ) THEN
 | |
| *
 | |
| *              Path 5tn (N > M, JOBZ='N')
 | |
| *              Perform bidiagonal SVD, only computing singular values
 | |
| *              Workspace: need   3*M [e, tauq, taup] + BDSPAC
 | |
| *
 | |
|                CALL SBDSDC( 'L', 'N', M, S, WORK( IE ), DUM, 1, DUM, 1,
 | |
|      $                      DUM, IDUM, WORK( NWORK ), IWORK, INFO )
 | |
|             ELSE IF( WNTQO ) THEN
 | |
| *              Path 5to (N > M, JOBZ='O')
 | |
|                LDWKVT = M
 | |
|                IVT = NWORK
 | |
|                IF( LWORK .GE. M*N + 3*M + BDSPAC ) THEN
 | |
| *
 | |
| *                 WORK( IVT ) is M by N
 | |
| *
 | |
|                   CALL SLASET( 'F', M, N, ZERO, ZERO, WORK( IVT ),
 | |
|      $                         LDWKVT )
 | |
|                   NWORK = IVT + LDWKVT*N
 | |
| *                 IL is unused; silence compile warnings
 | |
|                   IL = -1
 | |
|                ELSE
 | |
| *
 | |
| *                 WORK( IVT ) is M by M
 | |
| *
 | |
|                   NWORK = IVT + LDWKVT*M
 | |
|                   IL = NWORK
 | |
| *
 | |
| *                 WORK(IL) is M by CHUNK
 | |
| *
 | |
|                   CHUNK = ( LWORK - M*M - 3*M ) / M
 | |
|                END IF
 | |
| *
 | |
| *              Perform bidiagonal SVD, computing left singular vectors
 | |
| *              of bidiagonal matrix in U and computing right singular
 | |
| *              vectors of bidiagonal matrix in WORK(IVT)
 | |
| *              Workspace: need   3*M [e, tauq, taup] + M*M [VT] + BDSPAC
 | |
| *
 | |
|                CALL SBDSDC( 'L', 'I', M, S, WORK( IE ), U, LDU,
 | |
|      $                      WORK( IVT ), LDWKVT, DUM, IDUM,
 | |
|      $                      WORK( NWORK ), IWORK, INFO )
 | |
| *
 | |
| *              Overwrite U by left singular vectors of A
 | |
| *              Workspace: need   3*M [e, tauq, taup] + M*M [VT] + M    [work]
 | |
| *              Workspace: prefer 3*M [e, tauq, taup] + M*M [VT] + M*NB [work]
 | |
| *
 | |
|                CALL SORMBR( 'Q', 'L', 'N', M, M, N, A, LDA,
 | |
|      $                      WORK( ITAUQ ), U, LDU, WORK( NWORK ),
 | |
|      $                      LWORK - NWORK + 1, IERR )
 | |
| *
 | |
|                IF( LWORK .GE. M*N + 3*M + BDSPAC ) THEN
 | |
| *
 | |
| *                 Path 5to-fast
 | |
| *                 Overwrite WORK(IVT) by left singular vectors of A
 | |
| *                 Workspace: need   3*M [e, tauq, taup] + M*N [VT] + M    [work]
 | |
| *                 Workspace: prefer 3*M [e, tauq, taup] + M*N [VT] + M*NB [work]
 | |
| *
 | |
|                   CALL SORMBR( 'P', 'R', 'T', M, N, M, A, LDA,
 | |
|      $                         WORK( ITAUP ), WORK( IVT ), LDWKVT,
 | |
|      $                         WORK( NWORK ), LWORK - NWORK + 1, IERR )
 | |
| *
 | |
| *                 Copy right singular vectors of A from WORK(IVT) to A
 | |
| *
 | |
|                   CALL SLACPY( 'F', M, N, WORK( IVT ), LDWKVT, A, LDA )
 | |
|                ELSE
 | |
| *
 | |
| *                 Path 5to-slow
 | |
| *                 Generate P**T in A
 | |
| *                 Workspace: need   3*M [e, tauq, taup] + M*M [VT] + M    [work]
 | |
| *                 Workspace: prefer 3*M [e, tauq, taup] + M*M [VT] + M*NB [work]
 | |
| *
 | |
|                   CALL SORGBR( 'P', M, N, M, A, LDA, WORK( ITAUP ),
 | |
|      $                         WORK( NWORK ), LWORK - NWORK + 1, IERR )
 | |
| *
 | |
| *                 Multiply Q in A by right singular vectors of
 | |
| *                 bidiagonal matrix in WORK(IVT), storing result in
 | |
| *                 WORK(IL) and copying to A
 | |
| *                 Workspace: need   3*M [e, tauq, taup] + M*M [VT] + M*NB [L]
 | |
| *                 Workspace: prefer 3*M [e, tauq, taup] + M*M [VT] + M*N  [L]
 | |
| *
 | |
|                   DO 40 I = 1, N, CHUNK
 | |
|                      BLK = MIN( N - I + 1, CHUNK )
 | |
|                      CALL SGEMM( 'N', 'N', M, BLK, M, ONE, WORK( IVT ),
 | |
|      $                           LDWKVT, A( 1, I ), LDA, ZERO,
 | |
|      $                           WORK( IL ), M )
 | |
|                      CALL SLACPY( 'F', M, BLK, WORK( IL ), M, A( 1, I ),
 | |
|      $                            LDA )
 | |
|    40             CONTINUE
 | |
|                END IF
 | |
|             ELSE IF( WNTQS ) THEN
 | |
| *
 | |
| *              Path 5ts (N > M, JOBZ='S')
 | |
| *              Perform bidiagonal SVD, computing left singular vectors
 | |
| *              of bidiagonal matrix in U and computing right singular
 | |
| *              vectors of bidiagonal matrix in VT
 | |
| *              Workspace: need   3*M [e, tauq, taup] + BDSPAC
 | |
| *
 | |
|                CALL SLASET( 'F', M, N, ZERO, ZERO, VT, LDVT )
 | |
|                CALL SBDSDC( 'L', 'I', M, S, WORK( IE ), U, LDU, VT,
 | |
|      $                      LDVT, DUM, IDUM, WORK( NWORK ), IWORK,
 | |
|      $                      INFO )
 | |
| *
 | |
| *              Overwrite U by left singular vectors of A and VT
 | |
| *              by right singular vectors of A
 | |
| *              Workspace: need   3*M [e, tauq, taup] + M    [work]
 | |
| *              Workspace: prefer 3*M [e, tauq, taup] + M*NB [work]
 | |
| *
 | |
|                CALL SORMBR( 'Q', 'L', 'N', M, M, N, A, LDA,
 | |
|      $                      WORK( ITAUQ ), U, LDU, WORK( NWORK ),
 | |
|      $                      LWORK - NWORK + 1, IERR )
 | |
|                CALL SORMBR( 'P', 'R', 'T', M, N, M, A, LDA,
 | |
|      $                      WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
 | |
|      $                      LWORK - NWORK + 1, IERR )
 | |
|             ELSE IF( WNTQA ) THEN
 | |
| *
 | |
| *              Path 5ta (N > M, JOBZ='A')
 | |
| *              Perform bidiagonal SVD, computing left singular vectors
 | |
| *              of bidiagonal matrix in U and computing right singular
 | |
| *              vectors of bidiagonal matrix in VT
 | |
| *              Workspace: need   3*M [e, tauq, taup] + BDSPAC
 | |
| *
 | |
|                CALL SLASET( 'F', N, N, ZERO, ZERO, VT, LDVT )
 | |
|                CALL SBDSDC( 'L', 'I', M, S, WORK( IE ), U, LDU, VT,
 | |
|      $                      LDVT, DUM, IDUM, WORK( NWORK ), IWORK,
 | |
|      $                      INFO )
 | |
| *
 | |
| *              Set the right corner of VT to identity matrix
 | |
| *
 | |
|                IF( N.GT.M ) THEN
 | |
|                   CALL SLASET( 'F', N-M, N-M, ZERO, ONE, VT(M+1,M+1),
 | |
|      $                         LDVT )
 | |
|                END IF
 | |
| *
 | |
| *              Overwrite U by left singular vectors of A and VT
 | |
| *              by right singular vectors of A
 | |
| *              Workspace: need   3*M [e, tauq, taup] + N    [work]
 | |
| *              Workspace: prefer 3*M [e, tauq, taup] + N*NB [work]
 | |
| *
 | |
|                CALL SORMBR( 'Q', 'L', 'N', M, M, N, A, LDA,
 | |
|      $                      WORK( ITAUQ ), U, LDU, WORK( NWORK ),
 | |
|      $                      LWORK - NWORK + 1, IERR )
 | |
|                CALL SORMBR( 'P', 'R', 'T', N, N, M, A, LDA,
 | |
|      $                      WORK( ITAUP ), VT, LDVT, WORK( NWORK ),
 | |
|      $                      LWORK - NWORK + 1, IERR )
 | |
|             END IF
 | |
| *
 | |
|          END IF
 | |
| *
 | |
|       END IF
 | |
| *
 | |
| *     Undo scaling if necessary
 | |
| *
 | |
|       IF( ISCL.EQ.1 ) THEN
 | |
|          IF( ANRM.GT.BIGNUM )
 | |
|      $      CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MINMN, 1, S, MINMN,
 | |
|      $                   IERR )
 | |
|          IF( ANRM.LT.SMLNUM )
 | |
|      $      CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MINMN, 1, S, MINMN,
 | |
|      $                   IERR )
 | |
|       END IF
 | |
| *
 | |
| *     Return optimal workspace in WORK(1)
 | |
| *
 | |
|       WORK( 1 ) = MAXWRK
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SGESDD
 | |
| *
 | |
|       END
 |