278 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			278 lines
		
	
	
		
			7.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SGBTF2 computes the LU factorization of a general band matrix using the unblocked version of the algorithm.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SGBTF2 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgbtf2.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgbtf2.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgbtf2.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SGBTF2( M, N, KL, KU, AB, LDAB, IPIV, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, KL, KU, LDAB, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       REAL               AB( LDAB, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SGBTF2 computes an LU factorization of a real m-by-n band matrix A
 | |
| *> using partial pivoting with row interchanges.
 | |
| *>
 | |
| *> This is the unblocked version of the algorithm, calling Level 2 BLAS.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KL
 | |
| *> \verbatim
 | |
| *>          KL is INTEGER
 | |
| *>          The number of subdiagonals within the band of A.  KL >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KU
 | |
| *> \verbatim
 | |
| *>          KU is INTEGER
 | |
| *>          The number of superdiagonals within the band of A.  KU >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] AB
 | |
| *> \verbatim
 | |
| *>          AB is REAL array, dimension (LDAB,N)
 | |
| *>          On entry, the matrix A in band storage, in rows KL+1 to
 | |
| *>          2*KL+KU+1; rows 1 to KL of the array need not be set.
 | |
| *>          The j-th column of A is stored in the j-th column of the
 | |
| *>          array AB as follows:
 | |
| *>          AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
 | |
| *>
 | |
| *>          On exit, details of the factorization: U is stored as an
 | |
| *>          upper triangular band matrix with KL+KU superdiagonals in
 | |
| *>          rows 1 to KL+KU+1, and the multipliers used during the
 | |
| *>          factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
 | |
| *>          See below for further details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAB
 | |
| *> \verbatim
 | |
| *>          LDAB is INTEGER
 | |
| *>          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (min(M,N))
 | |
| *>          The pivot indices; for 1 <= i <= min(M,N), row i of the
 | |
| *>          matrix was interchanged with row IPIV(i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>          < 0: if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0: if INFO = +i, U(i,i) is exactly zero. The factorization
 | |
| *>               has been completed, but the factor U is exactly
 | |
| *>               singular, and division by zero will occur if it is used
 | |
| *>               to solve a system of equations.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup realGBcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The band storage scheme is illustrated by the following example, when
 | |
| *>  M = N = 6, KL = 2, KU = 1:
 | |
| *>
 | |
| *>  On entry:                       On exit:
 | |
| *>
 | |
| *>      *    *    *    +    +    +       *    *    *   u14  u25  u36
 | |
| *>      *    *    +    +    +    +       *    *   u13  u24  u35  u46
 | |
| *>      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
 | |
| *>     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
 | |
| *>     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   *
 | |
| *>     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    *
 | |
| *>
 | |
| *>  Array elements marked * are not used by the routine; elements marked
 | |
| *>  + need not be set on entry, but are required by the routine to store
 | |
| *>  elements of U, because of fill-in resulting from the row
 | |
| *>  interchanges.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SGBTF2( M, N, KL, KU, AB, LDAB, IPIV, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, KL, KU, LDAB, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       REAL               AB( LDAB, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, J, JP, JU, KM, KV
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            ISAMAX
 | |
|       EXTERNAL           ISAMAX
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SGER, SSCAL, SSWAP, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     KV is the number of superdiagonals in the factor U, allowing for
 | |
| *     fill-in.
 | |
| *
 | |
|       KV = KU + KL
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( M.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( KL.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( KU.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDAB.LT.KL+KV+1 ) THEN
 | |
|          INFO = -6
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SGBTF2', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( M.EQ.0 .OR. N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Gaussian elimination with partial pivoting
 | |
| *
 | |
| *     Set fill-in elements in columns KU+2 to KV to zero.
 | |
| *
 | |
|       DO 20 J = KU + 2, MIN( KV, N )
 | |
|          DO 10 I = KV - J + 2, KL
 | |
|             AB( I, J ) = ZERO
 | |
|    10    CONTINUE
 | |
|    20 CONTINUE
 | |
| *
 | |
| *     JU is the index of the last column affected by the current stage
 | |
| *     of the factorization.
 | |
| *
 | |
|       JU = 1
 | |
| *
 | |
|       DO 40 J = 1, MIN( M, N )
 | |
| *
 | |
| *        Set fill-in elements in column J+KV to zero.
 | |
| *
 | |
|          IF( J+KV.LE.N ) THEN
 | |
|             DO 30 I = 1, KL
 | |
|                AB( I, J+KV ) = ZERO
 | |
|    30       CONTINUE
 | |
|          END IF
 | |
| *
 | |
| *        Find pivot and test for singularity. KM is the number of
 | |
| *        subdiagonal elements in the current column.
 | |
| *
 | |
|          KM = MIN( KL, M-J )
 | |
|          JP = ISAMAX( KM+1, AB( KV+1, J ), 1 )
 | |
|          IPIV( J ) = JP + J - 1
 | |
|          IF( AB( KV+JP, J ).NE.ZERO ) THEN
 | |
|             JU = MAX( JU, MIN( J+KU+JP-1, N ) )
 | |
| *
 | |
| *           Apply interchange to columns J to JU.
 | |
| *
 | |
|             IF( JP.NE.1 )
 | |
|      $         CALL SSWAP( JU-J+1, AB( KV+JP, J ), LDAB-1,
 | |
|      $                     AB( KV+1, J ), LDAB-1 )
 | |
| *
 | |
|             IF( KM.GT.0 ) THEN
 | |
| *
 | |
| *              Compute multipliers.
 | |
| *
 | |
|                CALL SSCAL( KM, ONE / AB( KV+1, J ), AB( KV+2, J ), 1 )
 | |
| *
 | |
| *              Update trailing submatrix within the band.
 | |
| *
 | |
|                IF( JU.GT.J )
 | |
|      $            CALL SGER( KM, JU-J, -ONE, AB( KV+2, J ), 1,
 | |
|      $                       AB( KV, J+1 ), LDAB-1, AB( KV+1, J+1 ),
 | |
|      $                       LDAB-1 )
 | |
|             END IF
 | |
|          ELSE
 | |
| *
 | |
| *           If pivot is zero, set INFO to the index of the pivot
 | |
| *           unless a zero pivot has already been found.
 | |
| *
 | |
|             IF( INFO.EQ.0 )
 | |
|      $         INFO = J
 | |
|          END IF
 | |
|    40 CONTINUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of SGBTF2
 | |
| *
 | |
|       END
 |