1195 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1195 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| static logical c_true = TRUE_;
 | |
| static logical c_false = FALSE_;
 | |
| 
 | |
| /* > \brief \b DTRSNA */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download DTRSNA + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrsna.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrsna.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrsna.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE DTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, */
 | |
| /*                          LDVR, S, SEP, MM, M, WORK, LDWORK, IWORK, */
 | |
| /*                          INFO ) */
 | |
| 
 | |
| /*       CHARACTER          HOWMNY, JOB */
 | |
| /*       INTEGER            INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N */
 | |
| /*       LOGICAL            SELECT( * ) */
 | |
| /*       INTEGER            IWORK( * ) */
 | |
| /*       DOUBLE PRECISION   S( * ), SEP( * ), T( LDT, * ), VL( LDVL, * ), */
 | |
| /*      $                   VR( LDVR, * ), WORK( LDWORK, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > DTRSNA estimates reciprocal condition numbers for specified */
 | |
| /* > eigenvalues and/or right eigenvectors of a real upper */
 | |
| /* > quasi-triangular matrix T (or of any matrix Q*T*Q**T with Q */
 | |
| /* > orthogonal). */
 | |
| /* > */
 | |
| /* > T must be in Schur canonical form (as returned by DHSEQR), that is, */
 | |
| /* > block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each */
 | |
| /* > 2-by-2 diagonal block has its diagonal elements equal and its */
 | |
| /* > off-diagonal elements of opposite sign. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] JOB */
 | |
| /* > \verbatim */
 | |
| /* >          JOB is CHARACTER*1 */
 | |
| /* >          Specifies whether condition numbers are required for */
 | |
| /* >          eigenvalues (S) or eigenvectors (SEP): */
 | |
| /* >          = 'E': for eigenvalues only (S); */
 | |
| /* >          = 'V': for eigenvectors only (SEP); */
 | |
| /* >          = 'B': for both eigenvalues and eigenvectors (S and SEP). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] HOWMNY */
 | |
| /* > \verbatim */
 | |
| /* >          HOWMNY is CHARACTER*1 */
 | |
| /* >          = 'A': compute condition numbers for all eigenpairs; */
 | |
| /* >          = 'S': compute condition numbers for selected eigenpairs */
 | |
| /* >                 specified by the array SELECT. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] SELECT */
 | |
| /* > \verbatim */
 | |
| /* >          SELECT is LOGICAL array, dimension (N) */
 | |
| /* >          If HOWMNY = 'S', SELECT specifies the eigenpairs for which */
 | |
| /* >          condition numbers are required. To select condition numbers */
 | |
| /* >          for the eigenpair corresponding to a real eigenvalue w(j), */
 | |
| /* >          SELECT(j) must be set to .TRUE.. To select condition numbers */
 | |
| /* >          corresponding to a complex conjugate pair of eigenvalues w(j) */
 | |
| /* >          and w(j+1), either SELECT(j) or SELECT(j+1) or both, must be */
 | |
| /* >          set to .TRUE.. */
 | |
| /* >          If HOWMNY = 'A', SELECT is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix T. N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] T */
 | |
| /* > \verbatim */
 | |
| /* >          T is DOUBLE PRECISION array, dimension (LDT,N) */
 | |
| /* >          The upper quasi-triangular matrix T, in Schur canonical form. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDT */
 | |
| /* > \verbatim */
 | |
| /* >          LDT is INTEGER */
 | |
| /* >          The leading dimension of the array T. LDT >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] VL */
 | |
| /* > \verbatim */
 | |
| /* >          VL is DOUBLE PRECISION array, dimension (LDVL,M) */
 | |
| /* >          If JOB = 'E' or 'B', VL must contain left eigenvectors of T */
 | |
| /* >          (or of any Q*T*Q**T with Q orthogonal), corresponding to the */
 | |
| /* >          eigenpairs specified by HOWMNY and SELECT. The eigenvectors */
 | |
| /* >          must be stored in consecutive columns of VL, as returned by */
 | |
| /* >          DHSEIN or DTREVC. */
 | |
| /* >          If JOB = 'V', VL is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDVL */
 | |
| /* > \verbatim */
 | |
| /* >          LDVL is INTEGER */
 | |
| /* >          The leading dimension of the array VL. */
 | |
| /* >          LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] VR */
 | |
| /* > \verbatim */
 | |
| /* >          VR is DOUBLE PRECISION array, dimension (LDVR,M) */
 | |
| /* >          If JOB = 'E' or 'B', VR must contain right eigenvectors of T */
 | |
| /* >          (or of any Q*T*Q**T with Q orthogonal), corresponding to the */
 | |
| /* >          eigenpairs specified by HOWMNY and SELECT. The eigenvectors */
 | |
| /* >          must be stored in consecutive columns of VR, as returned by */
 | |
| /* >          DHSEIN or DTREVC. */
 | |
| /* >          If JOB = 'V', VR is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDVR */
 | |
| /* > \verbatim */
 | |
| /* >          LDVR is INTEGER */
 | |
| /* >          The leading dimension of the array VR. */
 | |
| /* >          LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] S */
 | |
| /* > \verbatim */
 | |
| /* >          S is DOUBLE PRECISION array, dimension (MM) */
 | |
| /* >          If JOB = 'E' or 'B', the reciprocal condition numbers of the */
 | |
| /* >          selected eigenvalues, stored in consecutive elements of the */
 | |
| /* >          array. For a complex conjugate pair of eigenvalues two */
 | |
| /* >          consecutive elements of S are set to the same value. Thus */
 | |
| /* >          S(j), SEP(j), and the j-th columns of VL and VR all */
 | |
| /* >          correspond to the same eigenpair (but not in general the */
 | |
| /* >          j-th eigenpair, unless all eigenpairs are selected). */
 | |
| /* >          If JOB = 'V', S is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] SEP */
 | |
| /* > \verbatim */
 | |
| /* >          SEP is DOUBLE PRECISION array, dimension (MM) */
 | |
| /* >          If JOB = 'V' or 'B', the estimated reciprocal condition */
 | |
| /* >          numbers of the selected eigenvectors, stored in consecutive */
 | |
| /* >          elements of the array. For a complex eigenvector two */
 | |
| /* >          consecutive elements of SEP are set to the same value. If */
 | |
| /* >          the eigenvalues cannot be reordered to compute SEP(j), SEP(j) */
 | |
| /* >          is set to 0; this can only occur when the true value would be */
 | |
| /* >          very small anyway. */
 | |
| /* >          If JOB = 'E', SEP is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] MM */
 | |
| /* > \verbatim */
 | |
| /* >          MM is INTEGER */
 | |
| /* >          The number of elements in the arrays S (if JOB = 'E' or 'B') */
 | |
| /* >           and/or SEP (if JOB = 'V' or 'B'). MM >= M. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The number of elements of the arrays S and/or SEP actually */
 | |
| /* >          used to store the estimated condition numbers. */
 | |
| /* >          If HOWMNY = 'A', M is set to N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is DOUBLE PRECISION array, dimension (LDWORK,N+6) */
 | |
| /* >          If JOB = 'E', WORK is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LDWORK is INTEGER */
 | |
| /* >          The leading dimension of the array WORK. */
 | |
| /* >          LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IWORK */
 | |
| /* > \verbatim */
 | |
| /* >          IWORK is INTEGER array, dimension (2*(N-1)) */
 | |
| /* >          If JOB = 'E', IWORK is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0: successful exit */
 | |
| /* >          < 0: if INFO = -i, the i-th argument had an illegal value */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date November 2017 */
 | |
| 
 | |
| /* > \ingroup doubleOTHERcomputational */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  The reciprocal of the condition number of an eigenvalue lambda is */
 | |
| /* >  defined as */
 | |
| /* > */
 | |
| /* >          S(lambda) = |v**T*u| / (norm(u)*norm(v)) */
 | |
| /* > */
 | |
| /* >  where u and v are the right and left eigenvectors of T corresponding */
 | |
| /* >  to lambda; v**T denotes the transpose of v, and norm(u) */
 | |
| /* >  denotes the Euclidean norm. These reciprocal condition numbers always */
 | |
| /* >  lie between zero (very badly conditioned) and one (very well */
 | |
| /* >  conditioned). If n = 1, S(lambda) is defined to be 1. */
 | |
| /* > */
 | |
| /* >  An approximate error bound for a computed eigenvalue W(i) is given by */
 | |
| /* > */
 | |
| /* >                      EPS * norm(T) / S(i) */
 | |
| /* > */
 | |
| /* >  where EPS is the machine precision. */
 | |
| /* > */
 | |
| /* >  The reciprocal of the condition number of the right eigenvector u */
 | |
| /* >  corresponding to lambda is defined as follows. Suppose */
 | |
| /* > */
 | |
| /* >              T = ( lambda  c  ) */
 | |
| /* >                  (   0    T22 ) */
 | |
| /* > */
 | |
| /* >  Then the reciprocal condition number is */
 | |
| /* > */
 | |
| /* >          SEP( lambda, T22 ) = sigma-f2cmin( T22 - lambda*I ) */
 | |
| /* > */
 | |
| /* >  where sigma-f2cmin denotes the smallest singular value. We approximate */
 | |
| /* >  the smallest singular value by the reciprocal of an estimate of the */
 | |
| /* >  one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is */
 | |
| /* >  defined to be abs(T(1,1)). */
 | |
| /* > */
 | |
| /* >  An approximate error bound for a computed right eigenvector VR(i) */
 | |
| /* >  is given by */
 | |
| /* > */
 | |
| /* >                      EPS * norm(T) / SEP(i) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ int dtrsna_(char *job, char *howmny, logical *select, 
 | |
| 	integer *n, doublereal *t, integer *ldt, doublereal *vl, integer *
 | |
| 	ldvl, doublereal *vr, integer *ldvr, doublereal *s, doublereal *sep, 
 | |
| 	integer *mm, integer *m, doublereal *work, integer *ldwork, integer *
 | |
| 	iwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, 
 | |
| 	    work_dim1, work_offset, i__1, i__2;
 | |
|     doublereal d__1, d__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer kase;
 | |
|     doublereal cond;
 | |
|     extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 
 | |
| 	    integer *);
 | |
|     logical pair;
 | |
|     integer ierr;
 | |
|     doublereal dumm, prod;
 | |
|     integer ifst;
 | |
|     doublereal lnrm;
 | |
|     integer ilst;
 | |
|     doublereal rnrm;
 | |
|     extern doublereal dnrm2_(integer *, doublereal *, integer *);
 | |
|     doublereal prod1, prod2;
 | |
|     integer i__, j, k;
 | |
|     doublereal scale, delta;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     integer isave[3];
 | |
|     logical wants;
 | |
|     doublereal dummy[1];
 | |
|     integer n2;
 | |
|     extern /* Subroutine */ int dlacn2_(integer *, doublereal *, doublereal *,
 | |
| 	     integer *, doublereal *, integer *, integer *);
 | |
|     extern doublereal dlapy2_(doublereal *, doublereal *);
 | |
|     extern /* Subroutine */ int dlabad_(doublereal *, doublereal *);
 | |
|     doublereal cs;
 | |
|     extern doublereal dlamch_(char *);
 | |
|     integer nn, ks;
 | |
|     doublereal sn, mu;
 | |
|     extern /* Subroutine */ int dlacpy_(char *, integer *, integer *, 
 | |
| 	    doublereal *, integer *, doublereal *, integer *), 
 | |
| 	    xerbla_(char *, integer *, ftnlen);
 | |
|     doublereal bignum;
 | |
|     logical wantbh;
 | |
|     extern /* Subroutine */ int dlaqtr_(logical *, logical *, integer *, 
 | |
| 	    doublereal *, integer *, doublereal *, doublereal *, doublereal *,
 | |
| 	     doublereal *, doublereal *, integer *), dtrexc_(char *, integer *
 | |
| 	    , doublereal *, integer *, doublereal *, integer *, integer *, 
 | |
| 	    integer *, doublereal *, integer *);
 | |
|     logical somcon;
 | |
|     doublereal smlnum;
 | |
|     logical wantsp;
 | |
|     doublereal eps, est;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.8.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     November 2017 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Decode and test the input parameters */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --select;
 | |
|     t_dim1 = *ldt;
 | |
|     t_offset = 1 + t_dim1 * 1;
 | |
|     t -= t_offset;
 | |
|     vl_dim1 = *ldvl;
 | |
|     vl_offset = 1 + vl_dim1 * 1;
 | |
|     vl -= vl_offset;
 | |
|     vr_dim1 = *ldvr;
 | |
|     vr_offset = 1 + vr_dim1 * 1;
 | |
|     vr -= vr_offset;
 | |
|     --s;
 | |
|     --sep;
 | |
|     work_dim1 = *ldwork;
 | |
|     work_offset = 1 + work_dim1 * 1;
 | |
|     work -= work_offset;
 | |
|     --iwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     wantbh = lsame_(job, "B");
 | |
|     wants = lsame_(job, "E") || wantbh;
 | |
|     wantsp = lsame_(job, "V") || wantbh;
 | |
| 
 | |
|     somcon = lsame_(howmny, "S");
 | |
| 
 | |
|     *info = 0;
 | |
|     if (! wants && ! wantsp) {
 | |
| 	*info = -1;
 | |
|     } else if (! lsame_(howmny, "A") && ! somcon) {
 | |
| 	*info = -2;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -4;
 | |
|     } else if (*ldt < f2cmax(1,*n)) {
 | |
| 	*info = -6;
 | |
|     } else if (*ldvl < 1 || wants && *ldvl < *n) {
 | |
| 	*info = -8;
 | |
|     } else if (*ldvr < 1 || wants && *ldvr < *n) {
 | |
| 	*info = -10;
 | |
|     } else {
 | |
| 
 | |
| /*        Set M to the number of eigenpairs for which condition numbers */
 | |
| /*        are required, and test MM. */
 | |
| 
 | |
| 	if (somcon) {
 | |
| 	    *m = 0;
 | |
| 	    pair = FALSE_;
 | |
| 	    i__1 = *n;
 | |
| 	    for (k = 1; k <= i__1; ++k) {
 | |
| 		if (pair) {
 | |
| 		    pair = FALSE_;
 | |
| 		} else {
 | |
| 		    if (k < *n) {
 | |
| 			if (t[k + 1 + k * t_dim1] == 0.) {
 | |
| 			    if (select[k]) {
 | |
| 				++(*m);
 | |
| 			    }
 | |
| 			} else {
 | |
| 			    pair = TRUE_;
 | |
| 			    if (select[k] || select[k + 1]) {
 | |
| 				*m += 2;
 | |
| 			    }
 | |
| 			}
 | |
| 		    } else {
 | |
| 			if (select[*n]) {
 | |
| 			    ++(*m);
 | |
| 			}
 | |
| 		    }
 | |
| 		}
 | |
| /* L10: */
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    *m = *n;
 | |
| 	}
 | |
| 
 | |
| 	if (*mm < *m) {
 | |
| 	    *info = -13;
 | |
| 	} else if (*ldwork < 1 || wantsp && *ldwork < *n) {
 | |
| 	    *info = -16;
 | |
| 	}
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("DTRSNA", &i__1, (ftnlen)6);
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*n == 0) {
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
|     if (*n == 1) {
 | |
| 	if (somcon) {
 | |
| 	    if (! select[1]) {
 | |
| 		return 0;
 | |
| 	    }
 | |
| 	}
 | |
| 	if (wants) {
 | |
| 	    s[1] = 1.;
 | |
| 	}
 | |
| 	if (wantsp) {
 | |
| 	    sep[1] = (d__1 = t[t_dim1 + 1], abs(d__1));
 | |
| 	}
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
| /*     Get machine constants */
 | |
| 
 | |
|     eps = dlamch_("P");
 | |
|     smlnum = dlamch_("S") / eps;
 | |
|     bignum = 1. / smlnum;
 | |
|     dlabad_(&smlnum, &bignum);
 | |
| 
 | |
|     ks = 0;
 | |
|     pair = FALSE_;
 | |
|     i__1 = *n;
 | |
|     for (k = 1; k <= i__1; ++k) {
 | |
| 
 | |
| /*        Determine whether T(k,k) begins a 1-by-1 or 2-by-2 block. */
 | |
| 
 | |
| 	if (pair) {
 | |
| 	    pair = FALSE_;
 | |
| 	    goto L60;
 | |
| 	} else {
 | |
| 	    if (k < *n) {
 | |
| 		pair = t[k + 1 + k * t_dim1] != 0.;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        Determine whether condition numbers are required for the k-th */
 | |
| /*        eigenpair. */
 | |
| 
 | |
| 	if (somcon) {
 | |
| 	    if (pair) {
 | |
| 		if (! select[k] && ! select[k + 1]) {
 | |
| 		    goto L60;
 | |
| 		}
 | |
| 	    } else {
 | |
| 		if (! select[k]) {
 | |
| 		    goto L60;
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	++ks;
 | |
| 
 | |
| 	if (wants) {
 | |
| 
 | |
| /*           Compute the reciprocal condition number of the k-th */
 | |
| /*           eigenvalue. */
 | |
| 
 | |
| 	    if (! pair) {
 | |
| 
 | |
| /*              Real eigenvalue. */
 | |
| 
 | |
| 		prod = ddot_(n, &vr[ks * vr_dim1 + 1], &c__1, &vl[ks * 
 | |
| 			vl_dim1 + 1], &c__1);
 | |
| 		rnrm = dnrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
 | |
| 		lnrm = dnrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
 | |
| 		s[ks] = abs(prod) / (rnrm * lnrm);
 | |
| 	    } else {
 | |
| 
 | |
| /*              Complex eigenvalue. */
 | |
| 
 | |
| 		prod1 = ddot_(n, &vr[ks * vr_dim1 + 1], &c__1, &vl[ks * 
 | |
| 			vl_dim1 + 1], &c__1);
 | |
| 		prod1 += ddot_(n, &vr[(ks + 1) * vr_dim1 + 1], &c__1, &vl[(ks 
 | |
| 			+ 1) * vl_dim1 + 1], &c__1);
 | |
| 		prod2 = ddot_(n, &vl[ks * vl_dim1 + 1], &c__1, &vr[(ks + 1) * 
 | |
| 			vr_dim1 + 1], &c__1);
 | |
| 		prod2 -= ddot_(n, &vl[(ks + 1) * vl_dim1 + 1], &c__1, &vr[ks *
 | |
| 			 vr_dim1 + 1], &c__1);
 | |
| 		d__1 = dnrm2_(n, &vr[ks * vr_dim1 + 1], &c__1);
 | |
| 		d__2 = dnrm2_(n, &vr[(ks + 1) * vr_dim1 + 1], &c__1);
 | |
| 		rnrm = dlapy2_(&d__1, &d__2);
 | |
| 		d__1 = dnrm2_(n, &vl[ks * vl_dim1 + 1], &c__1);
 | |
| 		d__2 = dnrm2_(n, &vl[(ks + 1) * vl_dim1 + 1], &c__1);
 | |
| 		lnrm = dlapy2_(&d__1, &d__2);
 | |
| 		cond = dlapy2_(&prod1, &prod2) / (rnrm * lnrm);
 | |
| 		s[ks] = cond;
 | |
| 		s[ks + 1] = cond;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	if (wantsp) {
 | |
| 
 | |
| /*           Estimate the reciprocal condition number of the k-th */
 | |
| /*           eigenvector. */
 | |
| 
 | |
| /*           Copy the matrix T to the array WORK and swap the diagonal */
 | |
| /*           block beginning at T(k,k) to the (1,1) position. */
 | |
| 
 | |
| 	    dlacpy_("Full", n, n, &t[t_offset], ldt, &work[work_offset], 
 | |
| 		    ldwork);
 | |
| 	    ifst = k;
 | |
| 	    ilst = 1;
 | |
| 	    dtrexc_("No Q", n, &work[work_offset], ldwork, dummy, &c__1, &
 | |
| 		    ifst, &ilst, &work[(*n + 1) * work_dim1 + 1], &ierr);
 | |
| 
 | |
| 	    if (ierr == 1 || ierr == 2) {
 | |
| 
 | |
| /*              Could not swap because blocks not well separated */
 | |
| 
 | |
| 		scale = 1.;
 | |
| 		est = bignum;
 | |
| 	    } else {
 | |
| 
 | |
| /*              Reordering successful */
 | |
| 
 | |
| 		if (work[work_dim1 + 2] == 0.) {
 | |
| 
 | |
| /*                 Form C = T22 - lambda*I in WORK(2:N,2:N). */
 | |
| 
 | |
| 		    i__2 = *n;
 | |
| 		    for (i__ = 2; i__ <= i__2; ++i__) {
 | |
| 			work[i__ + i__ * work_dim1] -= work[work_dim1 + 1];
 | |
| /* L20: */
 | |
| 		    }
 | |
| 		    n2 = 1;
 | |
| 		    nn = *n - 1;
 | |
| 		} else {
 | |
| 
 | |
| /*                 Triangularize the 2 by 2 block by unitary */
 | |
| /*                 transformation U = [  cs   i*ss ] */
 | |
| /*                                    [ i*ss   cs  ]. */
 | |
| /*                 such that the (1,1) position of WORK is complex */
 | |
| /*                 eigenvalue lambda with positive imaginary part. (2,2) */
 | |
| /*                 position of WORK is the complex eigenvalue lambda */
 | |
| /*                 with negative imaginary  part. */
 | |
| 
 | |
| 		    mu = sqrt((d__1 = work[(work_dim1 << 1) + 1], abs(d__1))) 
 | |
| 			    * sqrt((d__2 = work[work_dim1 + 2], abs(d__2)));
 | |
| 		    delta = dlapy2_(&mu, &work[work_dim1 + 2]);
 | |
| 		    cs = mu / delta;
 | |
| 		    sn = -work[work_dim1 + 2] / delta;
 | |
| 
 | |
| /*                 Form */
 | |
| 
 | |
| /*                 C**T = WORK(2:N,2:N) + i*[rwork(1) ..... rwork(n-1) ] */
 | |
| /*                                          [   mu                     ] */
 | |
| /*                                          [         ..               ] */
 | |
| /*                                          [             ..           ] */
 | |
| /*                                          [                  mu      ] */
 | |
| /*                 where C**T is transpose of matrix C, */
 | |
| /*                 and RWORK is stored starting in the N+1-st column of */
 | |
| /*                 WORK. */
 | |
| 
 | |
| 		    i__2 = *n;
 | |
| 		    for (j = 3; j <= i__2; ++j) {
 | |
| 			work[j * work_dim1 + 2] = cs * work[j * work_dim1 + 2]
 | |
| 				;
 | |
| 			work[j + j * work_dim1] -= work[work_dim1 + 1];
 | |
| /* L30: */
 | |
| 		    }
 | |
| 		    work[(work_dim1 << 1) + 2] = 0.;
 | |
| 
 | |
| 		    work[(*n + 1) * work_dim1 + 1] = mu * 2.;
 | |
| 		    i__2 = *n - 1;
 | |
| 		    for (i__ = 2; i__ <= i__2; ++i__) {
 | |
| 			work[i__ + (*n + 1) * work_dim1] = sn * work[(i__ + 1)
 | |
| 				 * work_dim1 + 1];
 | |
| /* L40: */
 | |
| 		    }
 | |
| 		    n2 = 2;
 | |
| 		    nn = *n - 1 << 1;
 | |
| 		}
 | |
| 
 | |
| /*              Estimate norm(inv(C**T)) */
 | |
| 
 | |
| 		est = 0.;
 | |
| 		kase = 0;
 | |
| L50:
 | |
| 		dlacn2_(&nn, &work[(*n + 2) * work_dim1 + 1], &work[(*n + 4) *
 | |
| 			 work_dim1 + 1], &iwork[1], &est, &kase, isave);
 | |
| 		if (kase != 0) {
 | |
| 		    if (kase == 1) {
 | |
| 			if (n2 == 1) {
 | |
| 
 | |
| /*                       Real eigenvalue: solve C**T*x = scale*c. */
 | |
| 
 | |
| 			    i__2 = *n - 1;
 | |
| 			    dlaqtr_(&c_true, &c_true, &i__2, &work[(work_dim1 
 | |
| 				    << 1) + 2], ldwork, dummy, &dumm, &scale, 
 | |
| 				    &work[(*n + 4) * work_dim1 + 1], &work[(*
 | |
| 				    n + 6) * work_dim1 + 1], &ierr);
 | |
| 			} else {
 | |
| 
 | |
| /*                       Complex eigenvalue: solve */
 | |
| /*                       C**T*(p+iq) = scale*(c+id) in real arithmetic. */
 | |
| 
 | |
| 			    i__2 = *n - 1;
 | |
| 			    dlaqtr_(&c_true, &c_false, &i__2, &work[(
 | |
| 				    work_dim1 << 1) + 2], ldwork, &work[(*n + 
 | |
| 				    1) * work_dim1 + 1], &mu, &scale, &work[(*
 | |
| 				    n + 4) * work_dim1 + 1], &work[(*n + 6) * 
 | |
| 				    work_dim1 + 1], &ierr);
 | |
| 			}
 | |
| 		    } else {
 | |
| 			if (n2 == 1) {
 | |
| 
 | |
| /*                       Real eigenvalue: solve C*x = scale*c. */
 | |
| 
 | |
| 			    i__2 = *n - 1;
 | |
| 			    dlaqtr_(&c_false, &c_true, &i__2, &work[(
 | |
| 				    work_dim1 << 1) + 2], ldwork, dummy, &
 | |
| 				    dumm, &scale, &work[(*n + 4) * work_dim1 
 | |
| 				    + 1], &work[(*n + 6) * work_dim1 + 1], &
 | |
| 				    ierr);
 | |
| 			} else {
 | |
| 
 | |
| /*                       Complex eigenvalue: solve */
 | |
| /*                       C*(p+iq) = scale*(c+id) in real arithmetic. */
 | |
| 
 | |
| 			    i__2 = *n - 1;
 | |
| 			    dlaqtr_(&c_false, &c_false, &i__2, &work[(
 | |
| 				    work_dim1 << 1) + 2], ldwork, &work[(*n + 
 | |
| 				    1) * work_dim1 + 1], &mu, &scale, &work[(*
 | |
| 				    n + 4) * work_dim1 + 1], &work[(*n + 6) * 
 | |
| 				    work_dim1 + 1], &ierr);
 | |
| 
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		    goto L50;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	    sep[ks] = scale / f2cmax(est,smlnum);
 | |
| 	    if (pair) {
 | |
| 		sep[ks + 1] = sep[ks];
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	if (pair) {
 | |
| 	    ++ks;
 | |
| 	}
 | |
| 
 | |
| L60:
 | |
| 	;
 | |
|     }
 | |
|     return 0;
 | |
| 
 | |
| /*     End of DTRSNA */
 | |
| 
 | |
| } /* dtrsna_ */
 | |
| 
 |