362 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			362 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DSYTRS2
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DSYTRS2 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytrs2.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytrs2.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytrs2.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DSYTRS2( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
 | |
| *                           WORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INFO, LDA, LDB, N, NRHS
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DSYTRS2 solves a system of linear equations A*X = B with a real
 | |
| *> symmetric matrix A using the factorization A = U*D*U**T or
 | |
| *> A = L*D*L**T computed by DSYTRF and converted by DSYCONV.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the details of the factorization are stored
 | |
| *>          as an upper or lower triangular matrix.
 | |
| *>          = 'U':  Upper triangular, form is A = U*D*U**T;
 | |
| *>          = 'L':  Lower triangular, form is A = L*D*L**T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand sides, i.e., the number of columns
 | |
| *>          of the matrix B.  NRHS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | |
| *>          The block diagonal matrix D and the multipliers used to
 | |
| *>          obtain the factor U or L as computed by DSYTRF.
 | |
| *>          Note that A is input / output. This might be counter-intuitive,
 | |
| *>          and one may think that A is input only. A is input / output. This
 | |
| *>          is because, at the start of the subroutine, we permute A in a
 | |
| *>          "better" form and then we permute A back to its original form at
 | |
| *>          the end.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>          Details of the interchanges and the block structure of D
 | |
| *>          as determined by DSYTRF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
 | |
| *>          On entry, the right hand side matrix B.
 | |
| *>          On exit, the solution matrix X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date June 2016
 | |
| *
 | |
| *> \ingroup doubleSYcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DSYTRS2( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
 | |
|      $                    WORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     June 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, LDA, LDB, N, NRHS
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE
 | |
|       PARAMETER          ( ONE = 1.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            UPPER
 | |
|       INTEGER            I, IINFO, J, K, KP
 | |
|       DOUBLE PRECISION   AK, AKM1, AKM1K, BK, BKM1, DENOM
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DSCAL, DSYCONV, DSWAP, DTRSM, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( NRHS.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -8
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DSYTRS2', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 .OR. NRHS.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Convert A
 | |
| *
 | |
|       CALL DSYCONV( UPLO, 'C', N, A, LDA, IPIV, WORK, IINFO )
 | |
| *
 | |
|       IF( UPPER ) THEN
 | |
| *
 | |
| *        Solve A*X = B, where A = U*D*U**T.
 | |
| *
 | |
| *       P**T * B
 | |
|         K=N
 | |
|         DO WHILE ( K .GE. 1 )
 | |
|          IF( IPIV( K ).GT.0 ) THEN
 | |
| *           1 x 1 diagonal block
 | |
| *           Interchange rows K and IPIV(K).
 | |
|             KP = IPIV( K )
 | |
|             IF( KP.NE.K )
 | |
|      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | |
|             K=K-1
 | |
|          ELSE
 | |
| *           2 x 2 diagonal block
 | |
| *           Interchange rows K-1 and -IPIV(K).
 | |
|             KP = -IPIV( K )
 | |
|             IF( KP.EQ.-IPIV( K-1 ) )
 | |
|      $         CALL DSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
 | |
|             K=K-2
 | |
|          END IF
 | |
|         END DO
 | |
| *
 | |
| *  Compute (U \P**T * B) -> B    [ (U \P**T * B) ]
 | |
| *
 | |
|         CALL DTRSM('L','U','N','U',N,NRHS,ONE,A,LDA,B,LDB)
 | |
| *
 | |
| *  Compute D \ B -> B   [ D \ (U \P**T * B) ]
 | |
| *
 | |
|          I=N
 | |
|          DO WHILE ( I .GE. 1 )
 | |
|             IF( IPIV(I) .GT. 0 ) THEN
 | |
|               CALL DSCAL( NRHS, ONE / A( I, I ), B( I, 1 ), LDB )
 | |
|             ELSEIF ( I .GT. 1) THEN
 | |
|                IF ( IPIV(I-1) .EQ. IPIV(I) ) THEN
 | |
|                   AKM1K = WORK(I)
 | |
|                   AKM1 = A( I-1, I-1 ) / AKM1K
 | |
|                   AK = A( I, I ) / AKM1K
 | |
|                   DENOM = AKM1*AK - ONE
 | |
|                   DO 15 J = 1, NRHS
 | |
|                      BKM1 = B( I-1, J ) / AKM1K
 | |
|                      BK = B( I, J ) / AKM1K
 | |
|                      B( I-1, J ) = ( AK*BKM1-BK ) / DENOM
 | |
|                      B( I, J ) = ( AKM1*BK-BKM1 ) / DENOM
 | |
|  15              CONTINUE
 | |
|                I = I - 1
 | |
|                ENDIF
 | |
|             ENDIF
 | |
|             I = I - 1
 | |
|          END DO
 | |
| *
 | |
| *      Compute (U**T \ B) -> B   [ U**T \ (D \ (U \P**T * B) ) ]
 | |
| *
 | |
|          CALL DTRSM('L','U','T','U',N,NRHS,ONE,A,LDA,B,LDB)
 | |
| *
 | |
| *       P * B  [ P * (U**T \ (D \ (U \P**T * B) )) ]
 | |
| *
 | |
|         K=1
 | |
|         DO WHILE ( K .LE. N )
 | |
|          IF( IPIV( K ).GT.0 ) THEN
 | |
| *           1 x 1 diagonal block
 | |
| *           Interchange rows K and IPIV(K).
 | |
|             KP = IPIV( K )
 | |
|             IF( KP.NE.K )
 | |
|      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | |
|             K=K+1
 | |
|          ELSE
 | |
| *           2 x 2 diagonal block
 | |
| *           Interchange rows K-1 and -IPIV(K).
 | |
|             KP = -IPIV( K )
 | |
|             IF( K .LT. N .AND. KP.EQ.-IPIV( K+1 ) )
 | |
|      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | |
|             K=K+2
 | |
|          ENDIF
 | |
|         END DO
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Solve A*X = B, where A = L*D*L**T.
 | |
| *
 | |
| *       P**T * B
 | |
|         K=1
 | |
|         DO WHILE ( K .LE. N )
 | |
|          IF( IPIV( K ).GT.0 ) THEN
 | |
| *           1 x 1 diagonal block
 | |
| *           Interchange rows K and IPIV(K).
 | |
|             KP = IPIV( K )
 | |
|             IF( KP.NE.K )
 | |
|      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | |
|             K=K+1
 | |
|          ELSE
 | |
| *           2 x 2 diagonal block
 | |
| *           Interchange rows K and -IPIV(K+1).
 | |
|             KP = -IPIV( K+1 )
 | |
|             IF( KP.EQ.-IPIV( K ) )
 | |
|      $         CALL DSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
 | |
|             K=K+2
 | |
|          ENDIF
 | |
|         END DO
 | |
| *
 | |
| *  Compute (L \P**T * B) -> B    [ (L \P**T * B) ]
 | |
| *
 | |
|         CALL DTRSM('L','L','N','U',N,NRHS,ONE,A,LDA,B,LDB)
 | |
| *
 | |
| *  Compute D \ B -> B   [ D \ (L \P**T * B) ]
 | |
| *
 | |
|          I=1
 | |
|          DO WHILE ( I .LE. N )
 | |
|             IF( IPIV(I) .GT. 0 ) THEN
 | |
|               CALL DSCAL( NRHS, ONE / A( I, I ), B( I, 1 ), LDB )
 | |
|             ELSE
 | |
|                   AKM1K = WORK(I)
 | |
|                   AKM1 = A( I, I ) / AKM1K
 | |
|                   AK = A( I+1, I+1 ) / AKM1K
 | |
|                   DENOM = AKM1*AK - ONE
 | |
|                   DO 25 J = 1, NRHS
 | |
|                      BKM1 = B( I, J ) / AKM1K
 | |
|                      BK = B( I+1, J ) / AKM1K
 | |
|                      B( I, J ) = ( AK*BKM1-BK ) / DENOM
 | |
|                      B( I+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
 | |
|  25              CONTINUE
 | |
|                   I = I + 1
 | |
|             ENDIF
 | |
|             I = I + 1
 | |
|          END DO
 | |
| *
 | |
| *  Compute (L**T \ B) -> B   [ L**T \ (D \ (L \P**T * B) ) ]
 | |
| *
 | |
|         CALL DTRSM('L','L','T','U',N,NRHS,ONE,A,LDA,B,LDB)
 | |
| *
 | |
| *       P * B  [ P * (L**T \ (D \ (L \P**T * B) )) ]
 | |
| *
 | |
|         K=N
 | |
|         DO WHILE ( K .GE. 1 )
 | |
|          IF( IPIV( K ).GT.0 ) THEN
 | |
| *           1 x 1 diagonal block
 | |
| *           Interchange rows K and IPIV(K).
 | |
|             KP = IPIV( K )
 | |
|             IF( KP.NE.K )
 | |
|      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | |
|             K=K-1
 | |
|          ELSE
 | |
| *           2 x 2 diagonal block
 | |
| *           Interchange rows K-1 and -IPIV(K).
 | |
|             KP = -IPIV( K )
 | |
|             IF( K.GT.1 .AND. KP.EQ.-IPIV( K-1 ) )
 | |
|      $         CALL DSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | |
|             K=K-2
 | |
|          ENDIF
 | |
|         END DO
 | |
| *
 | |
|       END IF
 | |
| *
 | |
| *     Revert A
 | |
| *
 | |
|       CALL DSYCONV( UPLO, 'R', N, A, LDA, IPIV, WORK, IINFO )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DSYTRS2
 | |
| *
 | |
|       END
 |