252 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			252 lines
		
	
	
		
			7.7 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> DSYSV_AA computes the solution to system of linear equations A * X = B for SY matrices</b>
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DSYSV_AA + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsysv_aa.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsysv_aa.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsysv_aa.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DSYSV_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK,
 | |
| *                            LWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            N, NRHS, LDA, LDB, LWORK, INFO
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DSYSV computes the solution to a real system of linear equations
 | |
| *>    A * X = B,
 | |
| *> where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
 | |
| *> matrices.
 | |
| *>
 | |
| *> Aasen's algorithm is used to factor A as
 | |
| *>    A = U**T * T * U,  if UPLO = 'U', or
 | |
| *>    A = L * T * L**T,  if UPLO = 'L',
 | |
| *> where U (or L) is a product of permutation and unit upper (lower)
 | |
| *> triangular matrices, and T is symmetric tridiagonal. The factored
 | |
| *> form of A is then used to solve the system of equations A * X = B.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  Upper triangle of A is stored;
 | |
| *>          = 'L':  Lower triangle of A is stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of linear equations, i.e., the order of the
 | |
| *>          matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand sides, i.e., the number of columns
 | |
| *>          of the matrix B.  NRHS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | |
| *>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
 | |
| *>          N-by-N upper triangular part of A contains the upper
 | |
| *>          triangular part of the matrix A, and the strictly lower
 | |
| *>          triangular part of A is not referenced.  If UPLO = 'L', the
 | |
| *>          leading N-by-N lower triangular part of A contains the lower
 | |
| *>          triangular part of the matrix A, and the strictly upper
 | |
| *>          triangular part of A is not referenced.
 | |
| *>
 | |
| *>          On exit, if INFO = 0, the tridiagonal matrix T and the
 | |
| *>          multipliers used to obtain the factor U or L from the
 | |
| *>          factorization A = U**T*T*U or A = L*T*L**T as computed by
 | |
| *>          DSYTRF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>          On exit, it contains the details of the interchanges, i.e.,
 | |
| *>          the row and column k of A were interchanged with the
 | |
| *>          row and column IPIV(k).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
 | |
| *>          On entry, the N-by-NRHS right hand side matrix B.
 | |
| *>          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The length of WORK.  LWORK >= MAX(1,2*N,3*N-2), and for
 | |
| *>          the best performance, LWORK >= MAX(1,N*NB), where NB is
 | |
| *>          the optimal blocksize for DSYTRF_AA.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>          < 0: if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
 | |
| *>               has been completed, but the block diagonal matrix D is
 | |
| *>               exactly singular, so the solution could not be computed.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date November 2017
 | |
| *
 | |
| *> \ingroup doubleSYsolve
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DSYSV_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK,
 | |
|      $                     LWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine (version 3.8.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2017
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, LDA, LDB, LWORK, N, NRHS
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY
 | |
|       INTEGER            LWKOPT, LWKOPT_SYTRF, LWKOPT_SYTRS
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ILAENV
 | |
|       EXTERNAL           ILAENV, LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA, DSYTRF_AA, DSYTRS_AA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
|       IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( NRHS.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( LWORK.LT.MAX(2*N, 3*N-2) .AND. .NOT.LQUERY ) THEN
 | |
|          INFO = -10
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          CALL DSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, -1, INFO )
 | |
|          LWKOPT_SYTRF = INT( WORK(1) )
 | |
|          CALL DSYTRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK,
 | |
|      $                   -1, INFO )
 | |
|          LWKOPT_SYTRS = INT( WORK(1) )
 | |
|          LWKOPT = MAX( LWKOPT_SYTRF, LWKOPT_SYTRS )
 | |
|          WORK( 1 ) = LWKOPT
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DSYSV_AA ', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Compute the factorization A = U**T*T*U or A = L*T*L**T.
 | |
| *
 | |
|       CALL DSYTRF_AA( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
| *
 | |
| *        Solve the system A*X = B, overwriting B with X.
 | |
| *
 | |
|          CALL DSYTRS_AA( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK,
 | |
|      $                      LWORK, INFO )
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|       WORK( 1 ) = LWKOPT
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DSYSV_AA
 | |
| *
 | |
|       END
 |