337 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			337 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> DPTSVX computes the solution to system of linear equations A * X = B for PT matrices</b>
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DPTSVX + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dptsvx.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dptsvx.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dptsvx.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DPTSVX( FACT, N, NRHS, D, E, DF, EF, B, LDB, X, LDX,
 | |
| *                          RCOND, FERR, BERR, WORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          FACT
 | |
| *       INTEGER            INFO, LDB, LDX, N, NRHS
 | |
| *       DOUBLE PRECISION   RCOND
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   B( LDB, * ), BERR( * ), D( * ), DF( * ),
 | |
| *      $                   E( * ), EF( * ), FERR( * ), WORK( * ),
 | |
| *      $                   X( LDX, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DPTSVX uses the factorization A = L*D*L**T to compute the solution
 | |
| *> to a real system of linear equations A*X = B, where A is an N-by-N
 | |
| *> symmetric positive definite tridiagonal matrix and X and B are
 | |
| *> N-by-NRHS matrices.
 | |
| *>
 | |
| *> Error bounds on the solution and a condition estimate are also
 | |
| *> provided.
 | |
| *> \endverbatim
 | |
| *
 | |
| *> \par Description:
 | |
| *  =================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> The following steps are performed:
 | |
| *>
 | |
| *> 1. If FACT = 'N', the matrix A is factored as A = L*D*L**T, where L
 | |
| *>    is a unit lower bidiagonal matrix and D is diagonal.  The
 | |
| *>    factorization can also be regarded as having the form
 | |
| *>    A = U**T*D*U.
 | |
| *>
 | |
| *> 2. If the leading i-by-i principal minor is not positive definite,
 | |
| *>    then the routine returns with INFO = i. Otherwise, the factored
 | |
| *>    form of A is used to estimate the condition number of the matrix
 | |
| *>    A.  If the reciprocal of the condition number is less than machine
 | |
| *>    precision, INFO = N+1 is returned as a warning, but the routine
 | |
| *>    still goes on to solve for X and compute error bounds as
 | |
| *>    described below.
 | |
| *>
 | |
| *> 3. The system of equations is solved for X using the factored form
 | |
| *>    of A.
 | |
| *>
 | |
| *> 4. Iterative refinement is applied to improve the computed solution
 | |
| *>    matrix and calculate error bounds and backward error estimates
 | |
| *>    for it.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] FACT
 | |
| *> \verbatim
 | |
| *>          FACT is CHARACTER*1
 | |
| *>          Specifies whether or not the factored form of A has been
 | |
| *>          supplied on entry.
 | |
| *>          = 'F':  On entry, DF and EF contain the factored form of A.
 | |
| *>                  D, E, DF, and EF will not be modified.
 | |
| *>          = 'N':  The matrix A will be copied to DF and EF and
 | |
| *>                  factored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand sides, i.e., the number of columns
 | |
| *>          of the matrices B and X.  NRHS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The n diagonal elements of the tridiagonal matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] E
 | |
| *> \verbatim
 | |
| *>          E is DOUBLE PRECISION array, dimension (N-1)
 | |
| *>          The (n-1) subdiagonal elements of the tridiagonal matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] DF
 | |
| *> \verbatim
 | |
| *>          DF is DOUBLE PRECISION array, dimension (N)
 | |
| *>          If FACT = 'F', then DF is an input argument and on entry
 | |
| *>          contains the n diagonal elements of the diagonal matrix D
 | |
| *>          from the L*D*L**T factorization of A.
 | |
| *>          If FACT = 'N', then DF is an output argument and on exit
 | |
| *>          contains the n diagonal elements of the diagonal matrix D
 | |
| *>          from the L*D*L**T factorization of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] EF
 | |
| *> \verbatim
 | |
| *>          EF is DOUBLE PRECISION array, dimension (N-1)
 | |
| *>          If FACT = 'F', then EF is an input argument and on entry
 | |
| *>          contains the (n-1) subdiagonal elements of the unit
 | |
| *>          bidiagonal factor L from the L*D*L**T factorization of A.
 | |
| *>          If FACT = 'N', then EF is an output argument and on exit
 | |
| *>          contains the (n-1) subdiagonal elements of the unit
 | |
| *>          bidiagonal factor L from the L*D*L**T factorization of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
 | |
| *>          The N-by-NRHS right hand side matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] X
 | |
| *> \verbatim
 | |
| *>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
 | |
| *>          If INFO = 0 of INFO = N+1, the N-by-NRHS solution matrix X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDX
 | |
| *> \verbatim
 | |
| *>          LDX is INTEGER
 | |
| *>          The leading dimension of the array X.  LDX >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RCOND
 | |
| *> \verbatim
 | |
| *>          RCOND is DOUBLE PRECISION
 | |
| *>          The reciprocal condition number of the matrix A.  If RCOND
 | |
| *>          is less than the machine precision (in particular, if
 | |
| *>          RCOND = 0), the matrix is singular to working precision.
 | |
| *>          This condition is indicated by a return code of INFO > 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] FERR
 | |
| *> \verbatim
 | |
| *>          FERR is DOUBLE PRECISION array, dimension (NRHS)
 | |
| *>          The forward error bound for each solution vector
 | |
| *>          X(j) (the j-th column of the solution matrix X).
 | |
| *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
 | |
| *>          is an estimated upper bound for the magnitude of the largest
 | |
| *>          element in (X(j) - XTRUE) divided by the magnitude of the
 | |
| *>          largest element in X(j).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BERR
 | |
| *> \verbatim
 | |
| *>          BERR is DOUBLE PRECISION array, dimension (NRHS)
 | |
| *>          The componentwise relative backward error of each solution
 | |
| *>          vector X(j) (i.e., the smallest relative change in any
 | |
| *>          element of A or B that makes X(j) an exact solution).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (2*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  if INFO = i, and i is
 | |
| *>                <= N:  the leading minor of order i of A is
 | |
| *>                       not positive definite, so the factorization
 | |
| *>                       could not be completed, and the solution has not
 | |
| *>                       been computed. RCOND = 0 is returned.
 | |
| *>                = N+1: U is nonsingular, but RCOND is less than machine
 | |
| *>                       precision, meaning that the matrix is singular
 | |
| *>                       to working precision.  Nevertheless, the
 | |
| *>                       solution and error bounds are computed because
 | |
| *>                       there are a number of situations where the
 | |
| *>                       computed solution can be more accurate than the
 | |
| *>                       value of RCOND would suggest.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup doublePTsolve
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DPTSVX( FACT, N, NRHS, D, E, DF, EF, B, LDB, X, LDX,
 | |
|      $                   RCOND, FERR, BERR, WORK, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          FACT
 | |
|       INTEGER            INFO, LDB, LDX, N, NRHS
 | |
|       DOUBLE PRECISION   RCOND
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   B( LDB, * ), BERR( * ), D( * ), DF( * ),
 | |
|      $                   E( * ), EF( * ), FERR( * ), WORK( * ),
 | |
|      $                   X( LDX, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO
 | |
|       PARAMETER          ( ZERO = 0.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            NOFACT
 | |
|       DOUBLE PRECISION   ANORM
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       DOUBLE PRECISION   DLAMCH, DLANST
 | |
|       EXTERNAL           LSAME, DLAMCH, DLANST
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DCOPY, DLACPY, DPTCON, DPTRFS, DPTTRF, DPTTRS,
 | |
|      $                   XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       NOFACT = LSAME( FACT, 'N' )
 | |
|       IF( .NOT.NOFACT .AND. .NOT.LSAME( FACT, 'F' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( NRHS.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -9
 | |
|       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -11
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DPTSVX', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       IF( NOFACT ) THEN
 | |
| *
 | |
| *        Compute the L*D*L**T (or U**T*D*U) factorization of A.
 | |
| *
 | |
|          CALL DCOPY( N, D, 1, DF, 1 )
 | |
|          IF( N.GT.1 )
 | |
|      $      CALL DCOPY( N-1, E, 1, EF, 1 )
 | |
|          CALL DPTTRF( N, DF, EF, INFO )
 | |
| *
 | |
| *        Return if INFO is non-zero.
 | |
| *
 | |
|          IF( INFO.GT.0 )THEN
 | |
|             RCOND = ZERO
 | |
|             RETURN
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Compute the norm of the matrix A.
 | |
| *
 | |
|       ANORM = DLANST( '1', N, D, E )
 | |
| *
 | |
| *     Compute the reciprocal of the condition number of A.
 | |
| *
 | |
|       CALL DPTCON( N, DF, EF, ANORM, RCOND, WORK, INFO )
 | |
| *
 | |
| *     Compute the solution vectors X.
 | |
| *
 | |
|       CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
 | |
|       CALL DPTTRS( N, NRHS, DF, EF, X, LDX, INFO )
 | |
| *
 | |
| *     Use iterative refinement to improve the computed solutions and
 | |
| *     compute error bounds and backward error estimates for them.
 | |
| *
 | |
|       CALL DPTRFS( N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR, BERR,
 | |
|      $             WORK, INFO )
 | |
| *
 | |
| *     Set INFO = N+1 if the matrix is singular to working precision.
 | |
| *
 | |
|       IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
 | |
|      $   INFO = N + 1
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DPTSVX
 | |
| *
 | |
|       END
 |