422 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			422 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DLASQ3 checks for deflation, computes a shift and calls dqds. Used by sbdsqr.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DLASQ3 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasq3.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasq3.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasq3.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,
 | |
| *                          ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1,
 | |
| *                          DN2, G, TAU )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       LOGICAL            IEEE
 | |
| *       INTEGER            I0, ITER, N0, NDIV, NFAIL, PP
 | |
| *       DOUBLE PRECISION   DESIG, DMIN, DMIN1, DMIN2, DN, DN1, DN2, G,
 | |
| *      $                   QMAX, SIGMA, TAU
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   Z( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DLASQ3 checks for deflation, computes a shift (TAU) and calls dqds.
 | |
| *> In case of failure it changes shifts, and tries again until output
 | |
| *> is positive.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] I0
 | |
| *> \verbatim
 | |
| *>          I0 is INTEGER
 | |
| *>         First index.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] N0
 | |
| *> \verbatim
 | |
| *>          N0 is INTEGER
 | |
| *>         Last index.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Z
 | |
| *> \verbatim
 | |
| *>          Z is DOUBLE PRECISION array, dimension ( 4*N0 )
 | |
| *>         Z holds the qd array.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] PP
 | |
| *> \verbatim
 | |
| *>          PP is INTEGER
 | |
| *>         PP=0 for ping, PP=1 for pong.
 | |
| *>         PP=2 indicates that flipping was applied to the Z array
 | |
| *>         and that the initial tests for deflation should not be
 | |
| *>         performed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] DMIN
 | |
| *> \verbatim
 | |
| *>          DMIN is DOUBLE PRECISION
 | |
| *>         Minimum value of d.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SIGMA
 | |
| *> \verbatim
 | |
| *>          SIGMA is DOUBLE PRECISION
 | |
| *>         Sum of shifts used in current segment.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] DESIG
 | |
| *> \verbatim
 | |
| *>          DESIG is DOUBLE PRECISION
 | |
| *>         Lower order part of SIGMA
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] QMAX
 | |
| *> \verbatim
 | |
| *>          QMAX is DOUBLE PRECISION
 | |
| *>         Maximum value of q.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] NFAIL
 | |
| *> \verbatim
 | |
| *>          NFAIL is INTEGER
 | |
| *>         Increment NFAIL by 1 each time the shift was too big.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] ITER
 | |
| *> \verbatim
 | |
| *>          ITER is INTEGER
 | |
| *>         Increment ITER by 1 for each iteration.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] NDIV
 | |
| *> \verbatim
 | |
| *>          NDIV is INTEGER
 | |
| *>         Increment NDIV by 1 for each division.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IEEE
 | |
| *> \verbatim
 | |
| *>          IEEE is LOGICAL
 | |
| *>         Flag for IEEE or non IEEE arithmetic (passed to DLASQ5).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] TTYPE
 | |
| *> \verbatim
 | |
| *>          TTYPE is INTEGER
 | |
| *>         Shift type.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] DMIN1
 | |
| *> \verbatim
 | |
| *>          DMIN1 is DOUBLE PRECISION
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] DMIN2
 | |
| *> \verbatim
 | |
| *>          DMIN2 is DOUBLE PRECISION
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] DN
 | |
| *> \verbatim
 | |
| *>          DN is DOUBLE PRECISION
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] DN1
 | |
| *> \verbatim
 | |
| *>          DN1 is DOUBLE PRECISION
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] DN2
 | |
| *> \verbatim
 | |
| *>          DN2 is DOUBLE PRECISION
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] G
 | |
| *> \verbatim
 | |
| *>          G is DOUBLE PRECISION
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is DOUBLE PRECISION
 | |
| *>
 | |
| *>         These are passed as arguments in order to save their values
 | |
| *>         between calls to DLASQ3.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date June 2016
 | |
| *
 | |
| *> \ingroup auxOTHERcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,
 | |
|      $                   ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1,
 | |
|      $                   DN2, G, TAU )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     June 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       LOGICAL            IEEE
 | |
|       INTEGER            I0, ITER, N0, NDIV, NFAIL, PP
 | |
|       DOUBLE PRECISION   DESIG, DMIN, DMIN1, DMIN2, DN, DN1, DN2, G,
 | |
|      $                   QMAX, SIGMA, TAU
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   Z( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   CBIAS
 | |
|       PARAMETER          ( CBIAS = 1.50D0 )
 | |
|       DOUBLE PRECISION   ZERO, QURTR, HALF, ONE, TWO, HUNDRD
 | |
|       PARAMETER          ( ZERO = 0.0D0, QURTR = 0.250D0, HALF = 0.5D0,
 | |
|      $                     ONE = 1.0D0, TWO = 2.0D0, HUNDRD = 100.0D0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            IPN4, J4, N0IN, NN, TTYPE
 | |
|       DOUBLE PRECISION   EPS, S, T, TEMP, TOL, TOL2
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DLASQ4, DLASQ5, DLASQ6
 | |
| *     ..
 | |
| *     .. External Function ..
 | |
|       DOUBLE PRECISION   DLAMCH
 | |
|       LOGICAL            DISNAN
 | |
|       EXTERNAL           DISNAN, DLAMCH
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       N0IN = N0
 | |
|       EPS = DLAMCH( 'Precision' )
 | |
|       TOL = EPS*HUNDRD
 | |
|       TOL2 = TOL**2
 | |
| *
 | |
| *     Check for deflation.
 | |
| *
 | |
|    10 CONTINUE
 | |
| *
 | |
|       IF( N0.LT.I0 )
 | |
|      $   RETURN
 | |
|       IF( N0.EQ.I0 )
 | |
|      $   GO TO 20
 | |
|       NN = 4*N0 + PP
 | |
|       IF( N0.EQ.( I0+1 ) )
 | |
|      $   GO TO 40
 | |
| *
 | |
| *     Check whether E(N0-1) is negligible, 1 eigenvalue.
 | |
| *
 | |
|       IF( Z( NN-5 ).GT.TOL2*( SIGMA+Z( NN-3 ) ) .AND.
 | |
|      $    Z( NN-2*PP-4 ).GT.TOL2*Z( NN-7 ) )
 | |
|      $   GO TO 30
 | |
| *
 | |
|    20 CONTINUE
 | |
| *
 | |
|       Z( 4*N0-3 ) = Z( 4*N0+PP-3 ) + SIGMA
 | |
|       N0 = N0 - 1
 | |
|       GO TO 10
 | |
| *
 | |
| *     Check  whether E(N0-2) is negligible, 2 eigenvalues.
 | |
| *
 | |
|    30 CONTINUE
 | |
| *
 | |
|       IF( Z( NN-9 ).GT.TOL2*SIGMA .AND.
 | |
|      $    Z( NN-2*PP-8 ).GT.TOL2*Z( NN-11 ) )
 | |
|      $   GO TO 50
 | |
| *
 | |
|    40 CONTINUE
 | |
| *
 | |
|       IF( Z( NN-3 ).GT.Z( NN-7 ) ) THEN
 | |
|          S = Z( NN-3 )
 | |
|          Z( NN-3 ) = Z( NN-7 )
 | |
|          Z( NN-7 ) = S
 | |
|       END IF
 | |
|       T = HALF*( ( Z( NN-7 )-Z( NN-3 ) )+Z( NN-5 ) )
 | |
|       IF( Z( NN-5 ).GT.Z( NN-3 )*TOL2.AND.T.NE.ZERO ) THEN
 | |
|          S = Z( NN-3 )*( Z( NN-5 ) / T )
 | |
|          IF( S.LE.T ) THEN
 | |
|             S = Z( NN-3 )*( Z( NN-5 ) /
 | |
|      $          ( T*( ONE+SQRT( ONE+S / T ) ) ) )
 | |
|          ELSE
 | |
|             S = Z( NN-3 )*( Z( NN-5 ) / ( T+SQRT( T )*SQRT( T+S ) ) )
 | |
|          END IF
 | |
|          T = Z( NN-7 ) + ( S+Z( NN-5 ) )
 | |
|          Z( NN-3 ) = Z( NN-3 )*( Z( NN-7 ) / T )
 | |
|          Z( NN-7 ) = T
 | |
|       END IF
 | |
|       Z( 4*N0-7 ) = Z( NN-7 ) + SIGMA
 | |
|       Z( 4*N0-3 ) = Z( NN-3 ) + SIGMA
 | |
|       N0 = N0 - 2
 | |
|       GO TO 10
 | |
| *
 | |
|    50 CONTINUE
 | |
|       IF( PP.EQ.2 )
 | |
|      $   PP = 0
 | |
| *
 | |
| *     Reverse the qd-array, if warranted.
 | |
| *
 | |
|       IF( DMIN.LE.ZERO .OR. N0.LT.N0IN ) THEN
 | |
|          IF( CBIAS*Z( 4*I0+PP-3 ).LT.Z( 4*N0+PP-3 ) ) THEN
 | |
|             IPN4 = 4*( I0+N0 )
 | |
|             DO 60 J4 = 4*I0, 2*( I0+N0-1 ), 4
 | |
|                TEMP = Z( J4-3 )
 | |
|                Z( J4-3 ) = Z( IPN4-J4-3 )
 | |
|                Z( IPN4-J4-3 ) = TEMP
 | |
|                TEMP = Z( J4-2 )
 | |
|                Z( J4-2 ) = Z( IPN4-J4-2 )
 | |
|                Z( IPN4-J4-2 ) = TEMP
 | |
|                TEMP = Z( J4-1 )
 | |
|                Z( J4-1 ) = Z( IPN4-J4-5 )
 | |
|                Z( IPN4-J4-5 ) = TEMP
 | |
|                TEMP = Z( J4 )
 | |
|                Z( J4 ) = Z( IPN4-J4-4 )
 | |
|                Z( IPN4-J4-4 ) = TEMP
 | |
|    60       CONTINUE
 | |
|             IF( N0-I0.LE.4 ) THEN
 | |
|                Z( 4*N0+PP-1 ) = Z( 4*I0+PP-1 )
 | |
|                Z( 4*N0-PP ) = Z( 4*I0-PP )
 | |
|             END IF
 | |
|             DMIN2 = MIN( DMIN2, Z( 4*N0+PP-1 ) )
 | |
|             Z( 4*N0+PP-1 ) = MIN( Z( 4*N0+PP-1 ), Z( 4*I0+PP-1 ),
 | |
|      $                            Z( 4*I0+PP+3 ) )
 | |
|             Z( 4*N0-PP ) = MIN( Z( 4*N0-PP ), Z( 4*I0-PP ),
 | |
|      $                          Z( 4*I0-PP+4 ) )
 | |
|             QMAX = MAX( QMAX, Z( 4*I0+PP-3 ), Z( 4*I0+PP+1 ) )
 | |
|             DMIN = -ZERO
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Choose a shift.
 | |
| *
 | |
|       CALL DLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN, DN1,
 | |
|      $             DN2, TAU, TTYPE, G )
 | |
| *
 | |
| *     Call dqds until DMIN > 0.
 | |
| *
 | |
|    70 CONTINUE
 | |
| *
 | |
|       CALL DLASQ5( I0, N0, Z, PP, TAU, SIGMA, DMIN, DMIN1, DMIN2, DN,
 | |
|      $             DN1, DN2, IEEE, EPS )
 | |
| *
 | |
|       NDIV = NDIV + ( N0-I0+2 )
 | |
|       ITER = ITER + 1
 | |
| *
 | |
| *     Check status.
 | |
| *
 | |
|       IF( DMIN.GE.ZERO .AND. DMIN1.GE.ZERO ) THEN
 | |
| *
 | |
| *        Success.
 | |
| *
 | |
|          GO TO 90
 | |
| *
 | |
|       ELSE IF( DMIN.LT.ZERO .AND. DMIN1.GT.ZERO .AND.
 | |
|      $         Z( 4*( N0-1 )-PP ).LT.TOL*( SIGMA+DN1 ) .AND.
 | |
|      $         ABS( DN ).LT.TOL*SIGMA ) THEN
 | |
| *
 | |
| *        Convergence hidden by negative DN.
 | |
| *
 | |
|          Z( 4*( N0-1 )-PP+2 ) = ZERO
 | |
|          DMIN = ZERO
 | |
|          GO TO 90
 | |
|       ELSE IF( DMIN.LT.ZERO ) THEN
 | |
| *
 | |
| *        TAU too big. Select new TAU and try again.
 | |
| *
 | |
|          NFAIL = NFAIL + 1
 | |
|          IF( TTYPE.LT.-22 ) THEN
 | |
| *
 | |
| *           Failed twice. Play it safe.
 | |
| *
 | |
|             TAU = ZERO
 | |
|          ELSE IF( DMIN1.GT.ZERO ) THEN
 | |
| *
 | |
| *           Late failure. Gives excellent shift.
 | |
| *
 | |
|             TAU = ( TAU+DMIN )*( ONE-TWO*EPS )
 | |
|             TTYPE = TTYPE - 11
 | |
|          ELSE
 | |
| *
 | |
| *           Early failure. Divide by 4.
 | |
| *
 | |
|             TAU = QURTR*TAU
 | |
|             TTYPE = TTYPE - 12
 | |
|          END IF
 | |
|          GO TO 70
 | |
|       ELSE IF( DISNAN( DMIN ) ) THEN
 | |
| *
 | |
| *        NaN.
 | |
| *
 | |
|          IF( TAU.EQ.ZERO ) THEN
 | |
|             GO TO 80
 | |
|          ELSE
 | |
|             TAU = ZERO
 | |
|             GO TO 70
 | |
|          END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Possible underflow. Play it safe.
 | |
| *
 | |
|          GO TO 80
 | |
|       END IF
 | |
| *
 | |
| *     Risk of underflow.
 | |
| *
 | |
|    80 CONTINUE
 | |
|       CALL DLASQ6( I0, N0, Z, PP, DMIN, DMIN1, DMIN2, DN, DN1, DN2 )
 | |
|       NDIV = NDIV + ( N0-I0+2 )
 | |
|       ITER = ITER + 1
 | |
|       TAU = ZERO
 | |
| *
 | |
|    90 CONTINUE
 | |
|       IF( TAU.LT.SIGMA ) THEN
 | |
|          DESIG = DESIG + TAU
 | |
|          T = SIGMA + DESIG
 | |
|          DESIG = DESIG - ( T-SIGMA )
 | |
|       ELSE
 | |
|          T = SIGMA + TAU
 | |
|          DESIG = SIGMA - ( T-TAU ) + DESIG
 | |
|       END IF
 | |
|       SIGMA = T
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DLASQ3
 | |
| *
 | |
|       END
 |