515 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			515 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DLASDA computes the singular value decomposition (SVD) of a real upper bidiagonal matrix with diagonal d and off-diagonal e. Used by sbdsdc.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DLASDA + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasda.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasda.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasda.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DLASDA( ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU, VT, K,
 | |
| *                          DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL,
 | |
| *                          PERM, GIVNUM, C, S, WORK, IWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            ICOMPQ, INFO, LDGCOL, LDU, N, SMLSIZ, SQRE
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
 | |
| *      $                   K( * ), PERM( LDGCOL, * )
 | |
| *       DOUBLE PRECISION   C( * ), D( * ), DIFL( LDU, * ), DIFR( LDU, * ),
 | |
| *      $                   E( * ), GIVNUM( LDU, * ), POLES( LDU, * ),
 | |
| *      $                   S( * ), U( LDU, * ), VT( LDU, * ), WORK( * ),
 | |
| *      $                   Z( LDU, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> Using a divide and conquer approach, DLASDA computes the singular
 | |
| *> value decomposition (SVD) of a real upper bidiagonal N-by-M matrix
 | |
| *> B with diagonal D and offdiagonal E, where M = N + SQRE. The
 | |
| *> algorithm computes the singular values in the SVD B = U * S * VT.
 | |
| *> The orthogonal matrices U and VT are optionally computed in
 | |
| *> compact form.
 | |
| *>
 | |
| *> A related subroutine, DLASD0, computes the singular values and
 | |
| *> the singular vectors in explicit form.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] ICOMPQ
 | |
| *> \verbatim
 | |
| *>          ICOMPQ is INTEGER
 | |
| *>         Specifies whether singular vectors are to be computed
 | |
| *>         in compact form, as follows
 | |
| *>         = 0: Compute singular values only.
 | |
| *>         = 1: Compute singular vectors of upper bidiagonal
 | |
| *>              matrix in compact form.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SMLSIZ
 | |
| *> \verbatim
 | |
| *>          SMLSIZ is INTEGER
 | |
| *>         The maximum size of the subproblems at the bottom of the
 | |
| *>         computation tree.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>         The row dimension of the upper bidiagonal matrix. This is
 | |
| *>         also the dimension of the main diagonal array D.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SQRE
 | |
| *> \verbatim
 | |
| *>          SQRE is INTEGER
 | |
| *>         Specifies the column dimension of the bidiagonal matrix.
 | |
| *>         = 0: The bidiagonal matrix has column dimension M = N;
 | |
| *>         = 1: The bidiagonal matrix has column dimension M = N + 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension ( N )
 | |
| *>         On entry D contains the main diagonal of the bidiagonal
 | |
| *>         matrix. On exit D, if INFO = 0, contains its singular values.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] E
 | |
| *> \verbatim
 | |
| *>          E is DOUBLE PRECISION array, dimension ( M-1 )
 | |
| *>         Contains the subdiagonal entries of the bidiagonal matrix.
 | |
| *>         On exit, E has been destroyed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] U
 | |
| *> \verbatim
 | |
| *>          U is DOUBLE PRECISION array,
 | |
| *>         dimension ( LDU, SMLSIZ ) if ICOMPQ = 1, and not referenced
 | |
| *>         if ICOMPQ = 0. If ICOMPQ = 1, on exit, U contains the left
 | |
| *>         singular vector matrices of all subproblems at the bottom
 | |
| *>         level.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU
 | |
| *> \verbatim
 | |
| *>          LDU is INTEGER, LDU = > N.
 | |
| *>         The leading dimension of arrays U, VT, DIFL, DIFR, POLES,
 | |
| *>         GIVNUM, and Z.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] VT
 | |
| *> \verbatim
 | |
| *>          VT is DOUBLE PRECISION array,
 | |
| *>         dimension ( LDU, SMLSIZ+1 ) if ICOMPQ = 1, and not referenced
 | |
| *>         if ICOMPQ = 0. If ICOMPQ = 1, on exit, VT**T contains the right
 | |
| *>         singular vector matrices of all subproblems at the bottom
 | |
| *>         level.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER array,
 | |
| *>         dimension ( N ) if ICOMPQ = 1 and dimension 1 if ICOMPQ = 0.
 | |
| *>         If ICOMPQ = 1, on exit, K(I) is the dimension of the I-th
 | |
| *>         secular equation on the computation tree.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] DIFL
 | |
| *> \verbatim
 | |
| *>          DIFL is DOUBLE PRECISION array, dimension ( LDU, NLVL ),
 | |
| *>         where NLVL = floor(log_2 (N/SMLSIZ))).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] DIFR
 | |
| *> \verbatim
 | |
| *>          DIFR is DOUBLE PRECISION array,
 | |
| *>                  dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1 and
 | |
| *>                  dimension ( N ) if ICOMPQ = 0.
 | |
| *>         If ICOMPQ = 1, on exit, DIFL(1:N, I) and DIFR(1:N, 2 * I - 1)
 | |
| *>         record distances between singular values on the I-th
 | |
| *>         level and singular values on the (I -1)-th level, and
 | |
| *>         DIFR(1:N, 2 * I ) contains the normalizing factors for
 | |
| *>         the right singular vector matrix. See DLASD8 for details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Z
 | |
| *> \verbatim
 | |
| *>          Z is DOUBLE PRECISION array,
 | |
| *>                  dimension ( LDU, NLVL ) if ICOMPQ = 1 and
 | |
| *>                  dimension ( N ) if ICOMPQ = 0.
 | |
| *>         The first K elements of Z(1, I) contain the components of
 | |
| *>         the deflation-adjusted updating row vector for subproblems
 | |
| *>         on the I-th level.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] POLES
 | |
| *> \verbatim
 | |
| *>          POLES is DOUBLE PRECISION array,
 | |
| *>         dimension ( LDU, 2 * NLVL ) if ICOMPQ = 1, and not referenced
 | |
| *>         if ICOMPQ = 0. If ICOMPQ = 1, on exit, POLES(1, 2*I - 1) and
 | |
| *>         POLES(1, 2*I) contain  the new and old singular values
 | |
| *>         involved in the secular equations on the I-th level.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] GIVPTR
 | |
| *> \verbatim
 | |
| *>          GIVPTR is INTEGER array,
 | |
| *>         dimension ( N ) if ICOMPQ = 1, and not referenced if
 | |
| *>         ICOMPQ = 0. If ICOMPQ = 1, on exit, GIVPTR( I ) records
 | |
| *>         the number of Givens rotations performed on the I-th
 | |
| *>         problem on the computation tree.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] GIVCOL
 | |
| *> \verbatim
 | |
| *>          GIVCOL is INTEGER array,
 | |
| *>         dimension ( LDGCOL, 2 * NLVL ) if ICOMPQ = 1, and not
 | |
| *>         referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
 | |
| *>         GIVCOL(1, 2 *I - 1) and GIVCOL(1, 2 *I) record the locations
 | |
| *>         of Givens rotations performed on the I-th level on the
 | |
| *>         computation tree.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDGCOL
 | |
| *> \verbatim
 | |
| *>          LDGCOL is INTEGER, LDGCOL = > N.
 | |
| *>         The leading dimension of arrays GIVCOL and PERM.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] PERM
 | |
| *> \verbatim
 | |
| *>          PERM is INTEGER array,
 | |
| *>         dimension ( LDGCOL, NLVL ) if ICOMPQ = 1, and not referenced
 | |
| *>         if ICOMPQ = 0. If ICOMPQ = 1, on exit, PERM(1, I) records
 | |
| *>         permutations done on the I-th level of the computation tree.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] GIVNUM
 | |
| *> \verbatim
 | |
| *>          GIVNUM is DOUBLE PRECISION array,
 | |
| *>         dimension ( LDU,  2 * NLVL ) if ICOMPQ = 1, and not
 | |
| *>         referenced if ICOMPQ = 0. If ICOMPQ = 1, on exit, for each I,
 | |
| *>         GIVNUM(1, 2 *I - 1) and GIVNUM(1, 2 *I) record the C- and S-
 | |
| *>         values of Givens rotations performed on the I-th level on
 | |
| *>         the computation tree.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] C
 | |
| *> \verbatim
 | |
| *>          C is DOUBLE PRECISION array,
 | |
| *>         dimension ( N ) if ICOMPQ = 1, and dimension 1 if ICOMPQ = 0.
 | |
| *>         If ICOMPQ = 1 and the I-th subproblem is not square, on exit,
 | |
| *>         C( I ) contains the C-value of a Givens rotation related to
 | |
| *>         the right null space of the I-th subproblem.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] S
 | |
| *> \verbatim
 | |
| *>          S is DOUBLE PRECISION array, dimension ( N ) if
 | |
| *>         ICOMPQ = 1, and dimension 1 if ICOMPQ = 0. If ICOMPQ = 1
 | |
| *>         and the I-th subproblem is not square, on exit, S( I )
 | |
| *>         contains the S-value of a Givens rotation related to
 | |
| *>         the right null space of the I-th subproblem.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension
 | |
| *>         (6 * N + (SMLSIZ + 1)*(SMLSIZ + 1)).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (7*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit.
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>          > 0:  if INFO = 1, a singular value did not converge
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date June 2017
 | |
| *
 | |
| *> \ingroup OTHERauxiliary
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Ming Gu and Huan Ren, Computer Science Division, University of
 | |
| *>     California at Berkeley, USA
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DLASDA( ICOMPQ, SMLSIZ, N, SQRE, D, E, U, LDU, VT, K,
 | |
|      $                   DIFL, DIFR, Z, POLES, GIVPTR, GIVCOL, LDGCOL,
 | |
|      $                   PERM, GIVNUM, C, S, WORK, IWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.7.1) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     June 2017
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            ICOMPQ, INFO, LDGCOL, LDU, N, SMLSIZ, SQRE
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            GIVCOL( LDGCOL, * ), GIVPTR( * ), IWORK( * ),
 | |
|      $                   K( * ), PERM( LDGCOL, * )
 | |
|       DOUBLE PRECISION   C( * ), D( * ), DIFL( LDU, * ), DIFR( LDU, * ),
 | |
|      $                   E( * ), GIVNUM( LDU, * ), POLES( LDU, * ),
 | |
|      $                   S( * ), U( LDU, * ), VT( LDU, * ), WORK( * ),
 | |
|      $                   Z( LDU, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, I1, IC, IDXQ, IDXQI, IM1, INODE, ITEMP, IWK,
 | |
|      $                   J, LF, LL, LVL, LVL2, M, NCC, ND, NDB1, NDIML,
 | |
|      $                   NDIMR, NL, NLF, NLP1, NLVL, NR, NRF, NRP1, NRU,
 | |
|      $                   NWORK1, NWORK2, SMLSZP, SQREI, VF, VFI, VL, VLI
 | |
|       DOUBLE PRECISION   ALPHA, BETA
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DCOPY, DLASD6, DLASDQ, DLASDT, DLASET, XERBLA
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
|       IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( SMLSIZ.LT.3 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDU.LT.( N+SQRE ) ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( LDGCOL.LT.N ) THEN
 | |
|          INFO = -17
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DLASDA', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       M = N + SQRE
 | |
| *
 | |
| *     If the input matrix is too small, call DLASDQ to find the SVD.
 | |
| *
 | |
|       IF( N.LE.SMLSIZ ) THEN
 | |
|          IF( ICOMPQ.EQ.0 ) THEN
 | |
|             CALL DLASDQ( 'U', SQRE, N, 0, 0, 0, D, E, VT, LDU, U, LDU,
 | |
|      $                   U, LDU, WORK, INFO )
 | |
|          ELSE
 | |
|             CALL DLASDQ( 'U', SQRE, N, M, N, 0, D, E, VT, LDU, U, LDU,
 | |
|      $                   U, LDU, WORK, INFO )
 | |
|          END IF
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Book-keeping and  set up the computation tree.
 | |
| *
 | |
|       INODE = 1
 | |
|       NDIML = INODE + N
 | |
|       NDIMR = NDIML + N
 | |
|       IDXQ = NDIMR + N
 | |
|       IWK = IDXQ + N
 | |
| *
 | |
|       NCC = 0
 | |
|       NRU = 0
 | |
| *
 | |
|       SMLSZP = SMLSIZ + 1
 | |
|       VF = 1
 | |
|       VL = VF + M
 | |
|       NWORK1 = VL + M
 | |
|       NWORK2 = NWORK1 + SMLSZP*SMLSZP
 | |
| *
 | |
|       CALL DLASDT( N, NLVL, ND, IWORK( INODE ), IWORK( NDIML ),
 | |
|      $             IWORK( NDIMR ), SMLSIZ )
 | |
| *
 | |
| *     for the nodes on bottom level of the tree, solve
 | |
| *     their subproblems by DLASDQ.
 | |
| *
 | |
|       NDB1 = ( ND+1 ) / 2
 | |
|       DO 30 I = NDB1, ND
 | |
| *
 | |
| *        IC : center row of each node
 | |
| *        NL : number of rows of left  subproblem
 | |
| *        NR : number of rows of right subproblem
 | |
| *        NLF: starting row of the left   subproblem
 | |
| *        NRF: starting row of the right  subproblem
 | |
| *
 | |
|          I1 = I - 1
 | |
|          IC = IWORK( INODE+I1 )
 | |
|          NL = IWORK( NDIML+I1 )
 | |
|          NLP1 = NL + 1
 | |
|          NR = IWORK( NDIMR+I1 )
 | |
|          NLF = IC - NL
 | |
|          NRF = IC + 1
 | |
|          IDXQI = IDXQ + NLF - 2
 | |
|          VFI = VF + NLF - 1
 | |
|          VLI = VL + NLF - 1
 | |
|          SQREI = 1
 | |
|          IF( ICOMPQ.EQ.0 ) THEN
 | |
|             CALL DLASET( 'A', NLP1, NLP1, ZERO, ONE, WORK( NWORK1 ),
 | |
|      $                   SMLSZP )
 | |
|             CALL DLASDQ( 'U', SQREI, NL, NLP1, NRU, NCC, D( NLF ),
 | |
|      $                   E( NLF ), WORK( NWORK1 ), SMLSZP,
 | |
|      $                   WORK( NWORK2 ), NL, WORK( NWORK2 ), NL,
 | |
|      $                   WORK( NWORK2 ), INFO )
 | |
|             ITEMP = NWORK1 + NL*SMLSZP
 | |
|             CALL DCOPY( NLP1, WORK( NWORK1 ), 1, WORK( VFI ), 1 )
 | |
|             CALL DCOPY( NLP1, WORK( ITEMP ), 1, WORK( VLI ), 1 )
 | |
|          ELSE
 | |
|             CALL DLASET( 'A', NL, NL, ZERO, ONE, U( NLF, 1 ), LDU )
 | |
|             CALL DLASET( 'A', NLP1, NLP1, ZERO, ONE, VT( NLF, 1 ), LDU )
 | |
|             CALL DLASDQ( 'U', SQREI, NL, NLP1, NL, NCC, D( NLF ),
 | |
|      $                   E( NLF ), VT( NLF, 1 ), LDU, U( NLF, 1 ), LDU,
 | |
|      $                   U( NLF, 1 ), LDU, WORK( NWORK1 ), INFO )
 | |
|             CALL DCOPY( NLP1, VT( NLF, 1 ), 1, WORK( VFI ), 1 )
 | |
|             CALL DCOPY( NLP1, VT( NLF, NLP1 ), 1, WORK( VLI ), 1 )
 | |
|          END IF
 | |
|          IF( INFO.NE.0 ) THEN
 | |
|             RETURN
 | |
|          END IF
 | |
|          DO 10 J = 1, NL
 | |
|             IWORK( IDXQI+J ) = J
 | |
|    10    CONTINUE
 | |
|          IF( ( I.EQ.ND ) .AND. ( SQRE.EQ.0 ) ) THEN
 | |
|             SQREI = 0
 | |
|          ELSE
 | |
|             SQREI = 1
 | |
|          END IF
 | |
|          IDXQI = IDXQI + NLP1
 | |
|          VFI = VFI + NLP1
 | |
|          VLI = VLI + NLP1
 | |
|          NRP1 = NR + SQREI
 | |
|          IF( ICOMPQ.EQ.0 ) THEN
 | |
|             CALL DLASET( 'A', NRP1, NRP1, ZERO, ONE, WORK( NWORK1 ),
 | |
|      $                   SMLSZP )
 | |
|             CALL DLASDQ( 'U', SQREI, NR, NRP1, NRU, NCC, D( NRF ),
 | |
|      $                   E( NRF ), WORK( NWORK1 ), SMLSZP,
 | |
|      $                   WORK( NWORK2 ), NR, WORK( NWORK2 ), NR,
 | |
|      $                   WORK( NWORK2 ), INFO )
 | |
|             ITEMP = NWORK1 + ( NRP1-1 )*SMLSZP
 | |
|             CALL DCOPY( NRP1, WORK( NWORK1 ), 1, WORK( VFI ), 1 )
 | |
|             CALL DCOPY( NRP1, WORK( ITEMP ), 1, WORK( VLI ), 1 )
 | |
|          ELSE
 | |
|             CALL DLASET( 'A', NR, NR, ZERO, ONE, U( NRF, 1 ), LDU )
 | |
|             CALL DLASET( 'A', NRP1, NRP1, ZERO, ONE, VT( NRF, 1 ), LDU )
 | |
|             CALL DLASDQ( 'U', SQREI, NR, NRP1, NR, NCC, D( NRF ),
 | |
|      $                   E( NRF ), VT( NRF, 1 ), LDU, U( NRF, 1 ), LDU,
 | |
|      $                   U( NRF, 1 ), LDU, WORK( NWORK1 ), INFO )
 | |
|             CALL DCOPY( NRP1, VT( NRF, 1 ), 1, WORK( VFI ), 1 )
 | |
|             CALL DCOPY( NRP1, VT( NRF, NRP1 ), 1, WORK( VLI ), 1 )
 | |
|          END IF
 | |
|          IF( INFO.NE.0 ) THEN
 | |
|             RETURN
 | |
|          END IF
 | |
|          DO 20 J = 1, NR
 | |
|             IWORK( IDXQI+J ) = J
 | |
|    20    CONTINUE
 | |
|    30 CONTINUE
 | |
| *
 | |
| *     Now conquer each subproblem bottom-up.
 | |
| *
 | |
|       J = 2**NLVL
 | |
|       DO 50 LVL = NLVL, 1, -1
 | |
|          LVL2 = LVL*2 - 1
 | |
| *
 | |
| *        Find the first node LF and last node LL on
 | |
| *        the current level LVL.
 | |
| *
 | |
|          IF( LVL.EQ.1 ) THEN
 | |
|             LF = 1
 | |
|             LL = 1
 | |
|          ELSE
 | |
|             LF = 2**( LVL-1 )
 | |
|             LL = 2*LF - 1
 | |
|          END IF
 | |
|          DO 40 I = LF, LL
 | |
|             IM1 = I - 1
 | |
|             IC = IWORK( INODE+IM1 )
 | |
|             NL = IWORK( NDIML+IM1 )
 | |
|             NR = IWORK( NDIMR+IM1 )
 | |
|             NLF = IC - NL
 | |
|             NRF = IC + 1
 | |
|             IF( I.EQ.LL ) THEN
 | |
|                SQREI = SQRE
 | |
|             ELSE
 | |
|                SQREI = 1
 | |
|             END IF
 | |
|             VFI = VF + NLF - 1
 | |
|             VLI = VL + NLF - 1
 | |
|             IDXQI = IDXQ + NLF - 1
 | |
|             ALPHA = D( IC )
 | |
|             BETA = E( IC )
 | |
|             IF( ICOMPQ.EQ.0 ) THEN
 | |
|                CALL DLASD6( ICOMPQ, NL, NR, SQREI, D( NLF ),
 | |
|      $                      WORK( VFI ), WORK( VLI ), ALPHA, BETA,
 | |
|      $                      IWORK( IDXQI ), PERM, GIVPTR( 1 ), GIVCOL,
 | |
|      $                      LDGCOL, GIVNUM, LDU, POLES, DIFL, DIFR, Z,
 | |
|      $                      K( 1 ), C( 1 ), S( 1 ), WORK( NWORK1 ),
 | |
|      $                      IWORK( IWK ), INFO )
 | |
|             ELSE
 | |
|                J = J - 1
 | |
|                CALL DLASD6( ICOMPQ, NL, NR, SQREI, D( NLF ),
 | |
|      $                      WORK( VFI ), WORK( VLI ), ALPHA, BETA,
 | |
|      $                      IWORK( IDXQI ), PERM( NLF, LVL ),
 | |
|      $                      GIVPTR( J ), GIVCOL( NLF, LVL2 ), LDGCOL,
 | |
|      $                      GIVNUM( NLF, LVL2 ), LDU,
 | |
|      $                      POLES( NLF, LVL2 ), DIFL( NLF, LVL ),
 | |
|      $                      DIFR( NLF, LVL2 ), Z( NLF, LVL ), K( J ),
 | |
|      $                      C( J ), S( J ), WORK( NWORK1 ),
 | |
|      $                      IWORK( IWK ), INFO )
 | |
|             END IF
 | |
|             IF( INFO.NE.0 ) THEN
 | |
|                RETURN
 | |
|             END IF
 | |
|    40    CONTINUE
 | |
|    50 CONTINUE
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DLASDA
 | |
| *
 | |
|       END
 |