635 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			635 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DLASD2 merges the two sets of singular values together into a single sorted set. Used by sbdsdc.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DLASD2 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd2.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd2.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd2.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DLASD2( NL, NR, SQRE, K, D, Z, ALPHA, BETA, U, LDU, VT,
 | |
| *                          LDVT, DSIGMA, U2, LDU2, VT2, LDVT2, IDXP, IDX,
 | |
| *                          IDXC, IDXQ, COLTYP, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, K, LDU, LDU2, LDVT, LDVT2, NL, NR, SQRE
 | |
| *       DOUBLE PRECISION   ALPHA, BETA
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            COLTYP( * ), IDX( * ), IDXC( * ), IDXP( * ),
 | |
| *      $                   IDXQ( * )
 | |
| *       DOUBLE PRECISION   D( * ), DSIGMA( * ), U( LDU, * ),
 | |
| *      $                   U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
 | |
| *      $                   Z( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DLASD2 merges the two sets of singular values together into a single
 | |
| *> sorted set.  Then it tries to deflate the size of the problem.
 | |
| *> There are two ways in which deflation can occur:  when two or more
 | |
| *> singular values are close together or if there is a tiny entry in the
 | |
| *> Z vector.  For each such occurrence the order of the related secular
 | |
| *> equation problem is reduced by one.
 | |
| *>
 | |
| *> DLASD2 is called from DLASD1.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] NL
 | |
| *> \verbatim
 | |
| *>          NL is INTEGER
 | |
| *>         The row dimension of the upper block.  NL >= 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NR
 | |
| *> \verbatim
 | |
| *>          NR is INTEGER
 | |
| *>         The row dimension of the lower block.  NR >= 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SQRE
 | |
| *> \verbatim
 | |
| *>          SQRE is INTEGER
 | |
| *>         = 0: the lower block is an NR-by-NR square matrix.
 | |
| *>         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
 | |
| *>
 | |
| *>         The bidiagonal matrix has N = NL + NR + 1 rows and
 | |
| *>         M = N + SQRE >= N columns.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *>         Contains the dimension of the non-deflated matrix,
 | |
| *>         This is the order of the related secular equation. 1 <= K <=N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension(N)
 | |
| *>         On entry D contains the singular values of the two submatrices
 | |
| *>         to be combined.  On exit D contains the trailing (N-K) updated
 | |
| *>         singular values (those which were deflated) sorted into
 | |
| *>         increasing order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Z
 | |
| *> \verbatim
 | |
| *>          Z is DOUBLE PRECISION array, dimension(N)
 | |
| *>         On exit Z contains the updating row vector in the secular
 | |
| *>         equation.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ALPHA
 | |
| *> \verbatim
 | |
| *>          ALPHA is DOUBLE PRECISION
 | |
| *>         Contains the diagonal element associated with the added row.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] BETA
 | |
| *> \verbatim
 | |
| *>          BETA is DOUBLE PRECISION
 | |
| *>         Contains the off-diagonal element associated with the added
 | |
| *>         row.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] U
 | |
| *> \verbatim
 | |
| *>          U is DOUBLE PRECISION array, dimension(LDU,N)
 | |
| *>         On entry U contains the left singular vectors of two
 | |
| *>         submatrices in the two square blocks with corners at (1,1),
 | |
| *>         (NL, NL), and (NL+2, NL+2), (N,N).
 | |
| *>         On exit U contains the trailing (N-K) updated left singular
 | |
| *>         vectors (those which were deflated) in its last N-K columns.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU
 | |
| *> \verbatim
 | |
| *>          LDU is INTEGER
 | |
| *>         The leading dimension of the array U.  LDU >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] VT
 | |
| *> \verbatim
 | |
| *>          VT is DOUBLE PRECISION array, dimension(LDVT,M)
 | |
| *>         On entry VT**T contains the right singular vectors of two
 | |
| *>         submatrices in the two square blocks with corners at (1,1),
 | |
| *>         (NL+1, NL+1), and (NL+2, NL+2), (M,M).
 | |
| *>         On exit VT**T contains the trailing (N-K) updated right singular
 | |
| *>         vectors (those which were deflated) in its last N-K columns.
 | |
| *>         In case SQRE =1, the last row of VT spans the right null
 | |
| *>         space.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVT
 | |
| *> \verbatim
 | |
| *>          LDVT is INTEGER
 | |
| *>         The leading dimension of the array VT.  LDVT >= M.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] DSIGMA
 | |
| *> \verbatim
 | |
| *>          DSIGMA is DOUBLE PRECISION array, dimension (N)
 | |
| *>         Contains a copy of the diagonal elements (K-1 singular values
 | |
| *>         and one zero) in the secular equation.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] U2
 | |
| *> \verbatim
 | |
| *>          U2 is DOUBLE PRECISION array, dimension(LDU2,N)
 | |
| *>         Contains a copy of the first K-1 left singular vectors which
 | |
| *>         will be used by DLASD3 in a matrix multiply (DGEMM) to solve
 | |
| *>         for the new left singular vectors. U2 is arranged into four
 | |
| *>         blocks. The first block contains a column with 1 at NL+1 and
 | |
| *>         zero everywhere else; the second block contains non-zero
 | |
| *>         entries only at and above NL; the third contains non-zero
 | |
| *>         entries only below NL+1; and the fourth is dense.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU2
 | |
| *> \verbatim
 | |
| *>          LDU2 is INTEGER
 | |
| *>         The leading dimension of the array U2.  LDU2 >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] VT2
 | |
| *> \verbatim
 | |
| *>          VT2 is DOUBLE PRECISION array, dimension(LDVT2,N)
 | |
| *>         VT2**T contains a copy of the first K right singular vectors
 | |
| *>         which will be used by DLASD3 in a matrix multiply (DGEMM) to
 | |
| *>         solve for the new right singular vectors. VT2 is arranged into
 | |
| *>         three blocks. The first block contains a row that corresponds
 | |
| *>         to the special 0 diagonal element in SIGMA; the second block
 | |
| *>         contains non-zeros only at and before NL +1; the third block
 | |
| *>         contains non-zeros only at and after  NL +2.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVT2
 | |
| *> \verbatim
 | |
| *>          LDVT2 is INTEGER
 | |
| *>         The leading dimension of the array VT2.  LDVT2 >= M.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IDXP
 | |
| *> \verbatim
 | |
| *>          IDXP is INTEGER array, dimension(N)
 | |
| *>         This will contain the permutation used to place deflated
 | |
| *>         values of D at the end of the array. On output IDXP(2:K)
 | |
| *>         points to the nondeflated D-values and IDXP(K+1:N)
 | |
| *>         points to the deflated singular values.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IDX
 | |
| *> \verbatim
 | |
| *>          IDX is INTEGER array, dimension(N)
 | |
| *>         This will contain the permutation used to sort the contents of
 | |
| *>         D into ascending order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IDXC
 | |
| *> \verbatim
 | |
| *>          IDXC is INTEGER array, dimension(N)
 | |
| *>         This will contain the permutation used to arrange the columns
 | |
| *>         of the deflated U matrix into three groups:  the first group
 | |
| *>         contains non-zero entries only at and above NL, the second
 | |
| *>         contains non-zero entries only below NL+2, and the third is
 | |
| *>         dense.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] IDXQ
 | |
| *> \verbatim
 | |
| *>          IDXQ is INTEGER array, dimension(N)
 | |
| *>         This contains the permutation which separately sorts the two
 | |
| *>         sub-problems in D into ascending order.  Note that entries in
 | |
| *>         the first hlaf of this permutation must first be moved one
 | |
| *>         position backward; and entries in the second half
 | |
| *>         must first have NL+1 added to their values.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] COLTYP
 | |
| *> \verbatim
 | |
| *>          COLTYP is INTEGER array, dimension(N)
 | |
| *>         As workspace, this will contain a label which will indicate
 | |
| *>         which of the following types a column in the U2 matrix or a
 | |
| *>         row in the VT2 matrix is:
 | |
| *>         1 : non-zero in the upper half only
 | |
| *>         2 : non-zero in the lower half only
 | |
| *>         3 : dense
 | |
| *>         4 : deflated
 | |
| *>
 | |
| *>         On exit, it is an array of dimension 4, with COLTYP(I) being
 | |
| *>         the dimension of the I-th type columns.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit.
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date June 2017
 | |
| *
 | |
| *> \ingroup OTHERauxiliary
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Ming Gu and Huan Ren, Computer Science Division, University of
 | |
| *>     California at Berkeley, USA
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DLASD2( NL, NR, SQRE, K, D, Z, ALPHA, BETA, U, LDU, VT,
 | |
|      $                   LDVT, DSIGMA, U2, LDU2, VT2, LDVT2, IDXP, IDX,
 | |
|      $                   IDXC, IDXQ, COLTYP, INFO )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.7.1) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     June 2017
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, K, LDU, LDU2, LDVT, LDVT2, NL, NR, SQRE
 | |
|       DOUBLE PRECISION   ALPHA, BETA
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            COLTYP( * ), IDX( * ), IDXC( * ), IDXP( * ),
 | |
|      $                   IDXQ( * )
 | |
|       DOUBLE PRECISION   D( * ), DSIGMA( * ), U( LDU, * ),
 | |
|      $                   U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
 | |
|      $                   Z( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE, TWO, EIGHT
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
 | |
|      $                   EIGHT = 8.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            CTOT( 4 ), PSM( 4 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            CT, I, IDXI, IDXJ, IDXJP, J, JP, JPREV, K2, M,
 | |
|      $                   N, NLP1, NLP2
 | |
|       DOUBLE PRECISION   C, EPS, HLFTOL, S, TAU, TOL, Z1
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMCH, DLAPY2
 | |
|       EXTERNAL           DLAMCH, DLAPY2
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DCOPY, DLACPY, DLAMRG, DLASET, DROT, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
|       IF( NL.LT.1 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( NR.LT.1 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( ( SQRE.NE.1 ) .AND. ( SQRE.NE.0 ) ) THEN
 | |
|          INFO = -3
 | |
|       END IF
 | |
| *
 | |
|       N = NL + NR + 1
 | |
|       M = N + SQRE
 | |
| *
 | |
|       IF( LDU.LT.N ) THEN
 | |
|          INFO = -10
 | |
|       ELSE IF( LDVT.LT.M ) THEN
 | |
|          INFO = -12
 | |
|       ELSE IF( LDU2.LT.N ) THEN
 | |
|          INFO = -15
 | |
|       ELSE IF( LDVT2.LT.M ) THEN
 | |
|          INFO = -17
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DLASD2', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       NLP1 = NL + 1
 | |
|       NLP2 = NL + 2
 | |
| *
 | |
| *     Generate the first part of the vector Z; and move the singular
 | |
| *     values in the first part of D one position backward.
 | |
| *
 | |
|       Z1 = ALPHA*VT( NLP1, NLP1 )
 | |
|       Z( 1 ) = Z1
 | |
|       DO 10 I = NL, 1, -1
 | |
|          Z( I+1 ) = ALPHA*VT( I, NLP1 )
 | |
|          D( I+1 ) = D( I )
 | |
|          IDXQ( I+1 ) = IDXQ( I ) + 1
 | |
|    10 CONTINUE
 | |
| *
 | |
| *     Generate the second part of the vector Z.
 | |
| *
 | |
|       DO 20 I = NLP2, M
 | |
|          Z( I ) = BETA*VT( I, NLP2 )
 | |
|    20 CONTINUE
 | |
| *
 | |
| *     Initialize some reference arrays.
 | |
| *
 | |
|       DO 30 I = 2, NLP1
 | |
|          COLTYP( I ) = 1
 | |
|    30 CONTINUE
 | |
|       DO 40 I = NLP2, N
 | |
|          COLTYP( I ) = 2
 | |
|    40 CONTINUE
 | |
| *
 | |
| *     Sort the singular values into increasing order
 | |
| *
 | |
|       DO 50 I = NLP2, N
 | |
|          IDXQ( I ) = IDXQ( I ) + NLP1
 | |
|    50 CONTINUE
 | |
| *
 | |
| *     DSIGMA, IDXC, IDXC, and the first column of U2
 | |
| *     are used as storage space.
 | |
| *
 | |
|       DO 60 I = 2, N
 | |
|          DSIGMA( I ) = D( IDXQ( I ) )
 | |
|          U2( I, 1 ) = Z( IDXQ( I ) )
 | |
|          IDXC( I ) = COLTYP( IDXQ( I ) )
 | |
|    60 CONTINUE
 | |
| *
 | |
|       CALL DLAMRG( NL, NR, DSIGMA( 2 ), 1, 1, IDX( 2 ) )
 | |
| *
 | |
|       DO 70 I = 2, N
 | |
|          IDXI = 1 + IDX( I )
 | |
|          D( I ) = DSIGMA( IDXI )
 | |
|          Z( I ) = U2( IDXI, 1 )
 | |
|          COLTYP( I ) = IDXC( IDXI )
 | |
|    70 CONTINUE
 | |
| *
 | |
| *     Calculate the allowable deflation tolerance
 | |
| *
 | |
|       EPS = DLAMCH( 'Epsilon' )
 | |
|       TOL = MAX( ABS( ALPHA ), ABS( BETA ) )
 | |
|       TOL = EIGHT*EPS*MAX( ABS( D( N ) ), TOL )
 | |
| *
 | |
| *     There are 2 kinds of deflation -- first a value in the z-vector
 | |
| *     is small, second two (or more) singular values are very close
 | |
| *     together (their difference is small).
 | |
| *
 | |
| *     If the value in the z-vector is small, we simply permute the
 | |
| *     array so that the corresponding singular value is moved to the
 | |
| *     end.
 | |
| *
 | |
| *     If two values in the D-vector are close, we perform a two-sided
 | |
| *     rotation designed to make one of the corresponding z-vector
 | |
| *     entries zero, and then permute the array so that the deflated
 | |
| *     singular value is moved to the end.
 | |
| *
 | |
| *     If there are multiple singular values then the problem deflates.
 | |
| *     Here the number of equal singular values are found.  As each equal
 | |
| *     singular value is found, an elementary reflector is computed to
 | |
| *     rotate the corresponding singular subspace so that the
 | |
| *     corresponding components of Z are zero in this new basis.
 | |
| *
 | |
|       K = 1
 | |
|       K2 = N + 1
 | |
|       DO 80 J = 2, N
 | |
|          IF( ABS( Z( J ) ).LE.TOL ) THEN
 | |
| *
 | |
| *           Deflate due to small z component.
 | |
| *
 | |
|             K2 = K2 - 1
 | |
|             IDXP( K2 ) = J
 | |
|             COLTYP( J ) = 4
 | |
|             IF( J.EQ.N )
 | |
|      $         GO TO 120
 | |
|          ELSE
 | |
|             JPREV = J
 | |
|             GO TO 90
 | |
|          END IF
 | |
|    80 CONTINUE
 | |
|    90 CONTINUE
 | |
|       J = JPREV
 | |
|   100 CONTINUE
 | |
|       J = J + 1
 | |
|       IF( J.GT.N )
 | |
|      $   GO TO 110
 | |
|       IF( ABS( Z( J ) ).LE.TOL ) THEN
 | |
| *
 | |
| *        Deflate due to small z component.
 | |
| *
 | |
|          K2 = K2 - 1
 | |
|          IDXP( K2 ) = J
 | |
|          COLTYP( J ) = 4
 | |
|       ELSE
 | |
| *
 | |
| *        Check if singular values are close enough to allow deflation.
 | |
| *
 | |
|          IF( ABS( D( J )-D( JPREV ) ).LE.TOL ) THEN
 | |
| *
 | |
| *           Deflation is possible.
 | |
| *
 | |
|             S = Z( JPREV )
 | |
|             C = Z( J )
 | |
| *
 | |
| *           Find sqrt(a**2+b**2) without overflow or
 | |
| *           destructive underflow.
 | |
| *
 | |
|             TAU = DLAPY2( C, S )
 | |
|             C = C / TAU
 | |
|             S = -S / TAU
 | |
|             Z( J ) = TAU
 | |
|             Z( JPREV ) = ZERO
 | |
| *
 | |
| *           Apply back the Givens rotation to the left and right
 | |
| *           singular vector matrices.
 | |
| *
 | |
|             IDXJP = IDXQ( IDX( JPREV )+1 )
 | |
|             IDXJ = IDXQ( IDX( J )+1 )
 | |
|             IF( IDXJP.LE.NLP1 ) THEN
 | |
|                IDXJP = IDXJP - 1
 | |
|             END IF
 | |
|             IF( IDXJ.LE.NLP1 ) THEN
 | |
|                IDXJ = IDXJ - 1
 | |
|             END IF
 | |
|             CALL DROT( N, U( 1, IDXJP ), 1, U( 1, IDXJ ), 1, C, S )
 | |
|             CALL DROT( M, VT( IDXJP, 1 ), LDVT, VT( IDXJ, 1 ), LDVT, C,
 | |
|      $                 S )
 | |
|             IF( COLTYP( J ).NE.COLTYP( JPREV ) ) THEN
 | |
|                COLTYP( J ) = 3
 | |
|             END IF
 | |
|             COLTYP( JPREV ) = 4
 | |
|             K2 = K2 - 1
 | |
|             IDXP( K2 ) = JPREV
 | |
|             JPREV = J
 | |
|          ELSE
 | |
|             K = K + 1
 | |
|             U2( K, 1 ) = Z( JPREV )
 | |
|             DSIGMA( K ) = D( JPREV )
 | |
|             IDXP( K ) = JPREV
 | |
|             JPREV = J
 | |
|          END IF
 | |
|       END IF
 | |
|       GO TO 100
 | |
|   110 CONTINUE
 | |
| *
 | |
| *     Record the last singular value.
 | |
| *
 | |
|       K = K + 1
 | |
|       U2( K, 1 ) = Z( JPREV )
 | |
|       DSIGMA( K ) = D( JPREV )
 | |
|       IDXP( K ) = JPREV
 | |
| *
 | |
|   120 CONTINUE
 | |
| *
 | |
| *     Count up the total number of the various types of columns, then
 | |
| *     form a permutation which positions the four column types into
 | |
| *     four groups of uniform structure (although one or more of these
 | |
| *     groups may be empty).
 | |
| *
 | |
|       DO 130 J = 1, 4
 | |
|          CTOT( J ) = 0
 | |
|   130 CONTINUE
 | |
|       DO 140 J = 2, N
 | |
|          CT = COLTYP( J )
 | |
|          CTOT( CT ) = CTOT( CT ) + 1
 | |
|   140 CONTINUE
 | |
| *
 | |
| *     PSM(*) = Position in SubMatrix (of types 1 through 4)
 | |
| *
 | |
|       PSM( 1 ) = 2
 | |
|       PSM( 2 ) = 2 + CTOT( 1 )
 | |
|       PSM( 3 ) = PSM( 2 ) + CTOT( 2 )
 | |
|       PSM( 4 ) = PSM( 3 ) + CTOT( 3 )
 | |
| *
 | |
| *     Fill out the IDXC array so that the permutation which it induces
 | |
| *     will place all type-1 columns first, all type-2 columns next,
 | |
| *     then all type-3's, and finally all type-4's, starting from the
 | |
| *     second column. This applies similarly to the rows of VT.
 | |
| *
 | |
|       DO 150 J = 2, N
 | |
|          JP = IDXP( J )
 | |
|          CT = COLTYP( JP )
 | |
|          IDXC( PSM( CT ) ) = J
 | |
|          PSM( CT ) = PSM( CT ) + 1
 | |
|   150 CONTINUE
 | |
| *
 | |
| *     Sort the singular values and corresponding singular vectors into
 | |
| *     DSIGMA, U2, and VT2 respectively.  The singular values/vectors
 | |
| *     which were not deflated go into the first K slots of DSIGMA, U2,
 | |
| *     and VT2 respectively, while those which were deflated go into the
 | |
| *     last N - K slots, except that the first column/row will be treated
 | |
| *     separately.
 | |
| *
 | |
|       DO 160 J = 2, N
 | |
|          JP = IDXP( J )
 | |
|          DSIGMA( J ) = D( JP )
 | |
|          IDXJ = IDXQ( IDX( IDXP( IDXC( J ) ) )+1 )
 | |
|          IF( IDXJ.LE.NLP1 ) THEN
 | |
|             IDXJ = IDXJ - 1
 | |
|          END IF
 | |
|          CALL DCOPY( N, U( 1, IDXJ ), 1, U2( 1, J ), 1 )
 | |
|          CALL DCOPY( M, VT( IDXJ, 1 ), LDVT, VT2( J, 1 ), LDVT2 )
 | |
|   160 CONTINUE
 | |
| *
 | |
| *     Determine DSIGMA(1), DSIGMA(2) and Z(1)
 | |
| *
 | |
|       DSIGMA( 1 ) = ZERO
 | |
|       HLFTOL = TOL / TWO
 | |
|       IF( ABS( DSIGMA( 2 ) ).LE.HLFTOL )
 | |
|      $   DSIGMA( 2 ) = HLFTOL
 | |
|       IF( M.GT.N ) THEN
 | |
|          Z( 1 ) = DLAPY2( Z1, Z( M ) )
 | |
|          IF( Z( 1 ).LE.TOL ) THEN
 | |
|             C = ONE
 | |
|             S = ZERO
 | |
|             Z( 1 ) = TOL
 | |
|          ELSE
 | |
|             C = Z1 / Z( 1 )
 | |
|             S = Z( M ) / Z( 1 )
 | |
|          END IF
 | |
|       ELSE
 | |
|          IF( ABS( Z1 ).LE.TOL ) THEN
 | |
|             Z( 1 ) = TOL
 | |
|          ELSE
 | |
|             Z( 1 ) = Z1
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Move the rest of the updating row to Z.
 | |
| *
 | |
|       CALL DCOPY( K-1, U2( 2, 1 ), 1, Z( 2 ), 1 )
 | |
| *
 | |
| *     Determine the first column of U2, the first row of VT2 and the
 | |
| *     last row of VT.
 | |
| *
 | |
|       CALL DLASET( 'A', N, 1, ZERO, ZERO, U2, LDU2 )
 | |
|       U2( NLP1, 1 ) = ONE
 | |
|       IF( M.GT.N ) THEN
 | |
|          DO 170 I = 1, NLP1
 | |
|             VT( M, I ) = -S*VT( NLP1, I )
 | |
|             VT2( 1, I ) = C*VT( NLP1, I )
 | |
|   170    CONTINUE
 | |
|          DO 180 I = NLP2, M
 | |
|             VT2( 1, I ) = S*VT( M, I )
 | |
|             VT( M, I ) = C*VT( M, I )
 | |
|   180    CONTINUE
 | |
|       ELSE
 | |
|          CALL DCOPY( M, VT( NLP1, 1 ), LDVT, VT2( 1, 1 ), LDVT2 )
 | |
|       END IF
 | |
|       IF( M.GT.N ) THEN
 | |
|          CALL DCOPY( M, VT( M, 1 ), LDVT, VT2( M, 1 ), LDVT2 )
 | |
|       END IF
 | |
| *
 | |
| *     The deflated singular values and their corresponding vectors go
 | |
| *     into the back of D, U, and V respectively.
 | |
| *
 | |
|       IF( N.GT.K ) THEN
 | |
|          CALL DCOPY( N-K, DSIGMA( K+1 ), 1, D( K+1 ), 1 )
 | |
|          CALL DLACPY( 'A', N, N-K, U2( 1, K+1 ), LDU2, U( 1, K+1 ),
 | |
|      $                LDU )
 | |
|          CALL DLACPY( 'A', N-K, M, VT2( K+1, 1 ), LDVT2, VT( K+1, 1 ),
 | |
|      $                LDVT )
 | |
|       END IF
 | |
| *
 | |
| *     Copy CTOT into COLTYP for referencing in DLASD3.
 | |
| *
 | |
|       DO 190 J = 1, 4
 | |
|          COLTYP( J ) = CTOT( J )
 | |
|   190 CONTINUE
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DLASD2
 | |
| *
 | |
|       END
 |