327 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			327 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DLASD1 computes the SVD of an upper bidiagonal matrix B of the specified size. Used by sbdsdc.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DLASD1 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasd1.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasd1.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasd1.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DLASD1( NL, NR, SQRE, D, ALPHA, BETA, U, LDU, VT, LDVT,
 | |
| *                          IDXQ, IWORK, WORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDU, LDVT, NL, NR, SQRE
 | |
| *       DOUBLE PRECISION   ALPHA, BETA
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IDXQ( * ), IWORK( * )
 | |
| *       DOUBLE PRECISION   D( * ), U( LDU, * ), VT( LDVT, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DLASD1 computes the SVD of an upper bidiagonal N-by-M matrix B,
 | |
| *> where N = NL + NR + 1 and M = N + SQRE. DLASD1 is called from DLASD0.
 | |
| *>
 | |
| *> A related subroutine DLASD7 handles the case in which the singular
 | |
| *> values (and the singular vectors in factored form) are desired.
 | |
| *>
 | |
| *> DLASD1 computes the SVD as follows:
 | |
| *>
 | |
| *>               ( D1(in)    0    0       0 )
 | |
| *>   B = U(in) * (   Z1**T   a   Z2**T    b ) * VT(in)
 | |
| *>               (   0       0   D2(in)   0 )
 | |
| *>
 | |
| *>     = U(out) * ( D(out) 0) * VT(out)
 | |
| *>
 | |
| *> where Z**T = (Z1**T a Z2**T b) = u**T VT**T, and u is a vector of dimension M
 | |
| *> with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros
 | |
| *> elsewhere; and the entry b is empty if SQRE = 0.
 | |
| *>
 | |
| *> The left singular vectors of the original matrix are stored in U, and
 | |
| *> the transpose of the right singular vectors are stored in VT, and the
 | |
| *> singular values are in D.  The algorithm consists of three stages:
 | |
| *>
 | |
| *>    The first stage consists of deflating the size of the problem
 | |
| *>    when there are multiple singular values or when there are zeros in
 | |
| *>    the Z vector.  For each such occurrence the dimension of the
 | |
| *>    secular equation problem is reduced by one.  This stage is
 | |
| *>    performed by the routine DLASD2.
 | |
| *>
 | |
| *>    The second stage consists of calculating the updated
 | |
| *>    singular values. This is done by finding the square roots of the
 | |
| *>    roots of the secular equation via the routine DLASD4 (as called
 | |
| *>    by DLASD3). This routine also calculates the singular vectors of
 | |
| *>    the current problem.
 | |
| *>
 | |
| *>    The final stage consists of computing the updated singular vectors
 | |
| *>    directly using the updated singular values.  The singular vectors
 | |
| *>    for the current problem are multiplied with the singular vectors
 | |
| *>    from the overall problem.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] NL
 | |
| *> \verbatim
 | |
| *>          NL is INTEGER
 | |
| *>         The row dimension of the upper block.  NL >= 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NR
 | |
| *> \verbatim
 | |
| *>          NR is INTEGER
 | |
| *>         The row dimension of the lower block.  NR >= 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SQRE
 | |
| *> \verbatim
 | |
| *>          SQRE is INTEGER
 | |
| *>         = 0: the lower block is an NR-by-NR square matrix.
 | |
| *>         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
 | |
| *>
 | |
| *>         The bidiagonal matrix has row dimension N = NL + NR + 1,
 | |
| *>         and column dimension M = N + SQRE.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array,
 | |
| *>                        dimension (N = NL+NR+1).
 | |
| *>         On entry D(1:NL,1:NL) contains the singular values of the
 | |
| *>         upper block; and D(NL+2:N) contains the singular values of
 | |
| *>         the lower block. On exit D(1:N) contains the singular values
 | |
| *>         of the modified matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] ALPHA
 | |
| *> \verbatim
 | |
| *>          ALPHA is DOUBLE PRECISION
 | |
| *>         Contains the diagonal element associated with the added row.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] BETA
 | |
| *> \verbatim
 | |
| *>          BETA is DOUBLE PRECISION
 | |
| *>         Contains the off-diagonal element associated with the added
 | |
| *>         row.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] U
 | |
| *> \verbatim
 | |
| *>          U is DOUBLE PRECISION array, dimension(LDU,N)
 | |
| *>         On entry U(1:NL, 1:NL) contains the left singular vectors of
 | |
| *>         the upper block; U(NL+2:N, NL+2:N) contains the left singular
 | |
| *>         vectors of the lower block. On exit U contains the left
 | |
| *>         singular vectors of the bidiagonal matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU
 | |
| *> \verbatim
 | |
| *>          LDU is INTEGER
 | |
| *>         The leading dimension of the array U.  LDU >= max( 1, N ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] VT
 | |
| *> \verbatim
 | |
| *>          VT is DOUBLE PRECISION array, dimension(LDVT,M)
 | |
| *>         where M = N + SQRE.
 | |
| *>         On entry VT(1:NL+1, 1:NL+1)**T contains the right singular
 | |
| *>         vectors of the upper block; VT(NL+2:M, NL+2:M)**T contains
 | |
| *>         the right singular vectors of the lower block. On exit
 | |
| *>         VT**T contains the right singular vectors of the
 | |
| *>         bidiagonal matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVT
 | |
| *> \verbatim
 | |
| *>          LDVT is INTEGER
 | |
| *>         The leading dimension of the array VT.  LDVT >= max( 1, M ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] IDXQ
 | |
| *> \verbatim
 | |
| *>          IDXQ is INTEGER array, dimension(N)
 | |
| *>         This contains the permutation which will reintegrate the
 | |
| *>         subproblem just solved back into sorted order, i.e.
 | |
| *>         D( IDXQ( I = 1, N ) ) will be in ascending order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension( 4 * N )
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension( 3*M**2 + 2*M )
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit.
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>          > 0:  if INFO = 1, a singular value did not converge
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date June 2016
 | |
| *
 | |
| *> \ingroup OTHERauxiliary
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Ming Gu and Huan Ren, Computer Science Division, University of
 | |
| *>     California at Berkeley, USA
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DLASD1( NL, NR, SQRE, D, ALPHA, BETA, U, LDU, VT, LDVT,
 | |
|      $                   IDXQ, IWORK, WORK, INFO )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     June 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDU, LDVT, NL, NR, SQRE
 | |
|       DOUBLE PRECISION   ALPHA, BETA
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IDXQ( * ), IWORK( * )
 | |
|       DOUBLE PRECISION   D( * ), U( LDU, * ), VT( LDVT, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
| *
 | |
|       DOUBLE PRECISION   ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            COLTYP, I, IDX, IDXC, IDXP, IQ, ISIGMA, IU2,
 | |
|      $                   IVT2, IZ, K, LDQ, LDU2, LDVT2, M, N, N1, N2
 | |
|       DOUBLE PRECISION   ORGNRM
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DLAMRG, DLASCL, DLASD2, DLASD3, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
|       IF( NL.LT.1 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( NR.LT.1 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN
 | |
|          INFO = -3
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DLASD1', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       N = NL + NR + 1
 | |
|       M = N + SQRE
 | |
| *
 | |
| *     The following values are for bookkeeping purposes only.  They are
 | |
| *     integer pointers which indicate the portion of the workspace
 | |
| *     used by a particular array in DLASD2 and DLASD3.
 | |
| *
 | |
|       LDU2 = N
 | |
|       LDVT2 = M
 | |
| *
 | |
|       IZ = 1
 | |
|       ISIGMA = IZ + M
 | |
|       IU2 = ISIGMA + N
 | |
|       IVT2 = IU2 + LDU2*N
 | |
|       IQ = IVT2 + LDVT2*M
 | |
| *
 | |
|       IDX = 1
 | |
|       IDXC = IDX + N
 | |
|       COLTYP = IDXC + N
 | |
|       IDXP = COLTYP + N
 | |
| *
 | |
| *     Scale.
 | |
| *
 | |
|       ORGNRM = MAX( ABS( ALPHA ), ABS( BETA ) )
 | |
|       D( NL+1 ) = ZERO
 | |
|       DO 10 I = 1, N
 | |
|          IF( ABS( D( I ) ).GT.ORGNRM ) THEN
 | |
|             ORGNRM = ABS( D( I ) )
 | |
|          END IF
 | |
|    10 CONTINUE
 | |
|       CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )
 | |
|       ALPHA = ALPHA / ORGNRM
 | |
|       BETA = BETA / ORGNRM
 | |
| *
 | |
| *     Deflate singular values.
 | |
| *
 | |
|       CALL DLASD2( NL, NR, SQRE, K, D, WORK( IZ ), ALPHA, BETA, U, LDU,
 | |
|      $             VT, LDVT, WORK( ISIGMA ), WORK( IU2 ), LDU2,
 | |
|      $             WORK( IVT2 ), LDVT2, IWORK( IDXP ), IWORK( IDX ),
 | |
|      $             IWORK( IDXC ), IDXQ, IWORK( COLTYP ), INFO )
 | |
| *
 | |
| *     Solve Secular Equation and update singular vectors.
 | |
| *
 | |
|       LDQ = K
 | |
|       CALL DLASD3( NL, NR, SQRE, K, D, WORK( IQ ), LDQ, WORK( ISIGMA ),
 | |
|      $             U, LDU, WORK( IU2 ), LDU2, VT, LDVT, WORK( IVT2 ),
 | |
|      $             LDVT2, IWORK( IDXC ), IWORK( COLTYP ), WORK( IZ ),
 | |
|      $             INFO )
 | |
| *
 | |
| *     Report the convergence failure.
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Unscale.
 | |
| *
 | |
|       CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
 | |
| *
 | |
| *     Prepare the IDXQ sorting permutation.
 | |
| *
 | |
|       N1 = K
 | |
|       N2 = N - K
 | |
|       CALL DLAMRG( N1, N2, D, 1, -1, IDXQ )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DLASD1
 | |
| *
 | |
|       END
 |