324 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			324 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DLARZB applies a block reflector or its transpose to a general matrix.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DLARZB + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarzb.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarzb.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarzb.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V,
 | |
| *                          LDV, T, LDT, C, LDC, WORK, LDWORK )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          DIRECT, SIDE, STOREV, TRANS
 | |
| *       INTEGER            K, L, LDC, LDT, LDV, LDWORK, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   C( LDC, * ), T( LDT, * ), V( LDV, * ),
 | |
| *      $                   WORK( LDWORK, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DLARZB applies a real block reflector H or its transpose H**T to
 | |
| *> a real distributed M-by-N  C from the left or the right.
 | |
| *>
 | |
| *> Currently, only STOREV = 'R' and DIRECT = 'B' are supported.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] SIDE
 | |
| *> \verbatim
 | |
| *>          SIDE is CHARACTER*1
 | |
| *>          = 'L': apply H or H**T from the Left
 | |
| *>          = 'R': apply H or H**T from the Right
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>          = 'N': apply H (No transpose)
 | |
| *>          = 'C': apply H**T (Transpose)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DIRECT
 | |
| *> \verbatim
 | |
| *>          DIRECT is CHARACTER*1
 | |
| *>          Indicates how H is formed from a product of elementary
 | |
| *>          reflectors
 | |
| *>          = 'F': H = H(1) H(2) . . . H(k) (Forward, not supported yet)
 | |
| *>          = 'B': H = H(k) . . . H(2) H(1) (Backward)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] STOREV
 | |
| *> \verbatim
 | |
| *>          STOREV is CHARACTER*1
 | |
| *>          Indicates how the vectors which define the elementary
 | |
| *>          reflectors are stored:
 | |
| *>          = 'C': Columnwise                        (not supported yet)
 | |
| *>          = 'R': Rowwise
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix C.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix C.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *>          The order of the matrix T (= the number of elementary
 | |
| *>          reflectors whose product defines the block reflector).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] L
 | |
| *> \verbatim
 | |
| *>          L is INTEGER
 | |
| *>          The number of columns of the matrix V containing the
 | |
| *>          meaningful part of the Householder reflectors.
 | |
| *>          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] V
 | |
| *> \verbatim
 | |
| *>          V is DOUBLE PRECISION array, dimension (LDV,NV).
 | |
| *>          If STOREV = 'C', NV = K; if STOREV = 'R', NV = L.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDV
 | |
| *> \verbatim
 | |
| *>          LDV is INTEGER
 | |
| *>          The leading dimension of the array V.
 | |
| *>          If STOREV = 'C', LDV >= L; if STOREV = 'R', LDV >= K.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] T
 | |
| *> \verbatim
 | |
| *>          T is DOUBLE PRECISION array, dimension (LDT,K)
 | |
| *>          The triangular K-by-K matrix T in the representation of the
 | |
| *>          block reflector.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDT
 | |
| *> \verbatim
 | |
| *>          LDT is INTEGER
 | |
| *>          The leading dimension of the array T. LDT >= K.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] C
 | |
| *> \verbatim
 | |
| *>          C is DOUBLE PRECISION array, dimension (LDC,N)
 | |
| *>          On entry, the M-by-N matrix C.
 | |
| *>          On exit, C is overwritten by H*C or H**T*C or C*H or C*H**T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDC
 | |
| *> \verbatim
 | |
| *>          LDC is INTEGER
 | |
| *>          The leading dimension of the array C. LDC >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (LDWORK,K)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDWORK
 | |
| *> \verbatim
 | |
| *>          LDWORK is INTEGER
 | |
| *>          The leading dimension of the array WORK.
 | |
| *>          If SIDE = 'L', LDWORK >= max(1,N);
 | |
| *>          if SIDE = 'R', LDWORK >= max(1,M).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup doubleOTHERcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DLARZB( SIDE, TRANS, DIRECT, STOREV, M, N, K, L, V,
 | |
|      $                   LDV, T, LDT, C, LDC, WORK, LDWORK )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          DIRECT, SIDE, STOREV, TRANS
 | |
|       INTEGER            K, L, LDC, LDT, LDV, LDWORK, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   C( LDC, * ), T( LDT, * ), V( LDV, * ),
 | |
|      $                   WORK( LDWORK, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE
 | |
|       PARAMETER          ( ONE = 1.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       CHARACTER          TRANST
 | |
|       INTEGER            I, INFO, J
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DCOPY, DGEMM, DTRMM, XERBLA
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( M.LE.0 .OR. N.LE.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Check for currently supported options
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( .NOT.LSAME( DIRECT, 'B' ) ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( .NOT.LSAME( STOREV, 'R' ) ) THEN
 | |
|          INFO = -4
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DLARZB', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       IF( LSAME( TRANS, 'N' ) ) THEN
 | |
|          TRANST = 'T'
 | |
|       ELSE
 | |
|          TRANST = 'N'
 | |
|       END IF
 | |
| *
 | |
|       IF( LSAME( SIDE, 'L' ) ) THEN
 | |
| *
 | |
| *        Form  H * C  or  H**T * C
 | |
| *
 | |
| *        W( 1:n, 1:k ) = C( 1:k, 1:n )**T
 | |
| *
 | |
|          DO 10 J = 1, K
 | |
|             CALL DCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
 | |
|    10    CONTINUE
 | |
| *
 | |
| *        W( 1:n, 1:k ) = W( 1:n, 1:k ) + ...
 | |
| *                        C( m-l+1:m, 1:n )**T * V( 1:k, 1:l )**T
 | |
| *
 | |
|          IF( L.GT.0 )
 | |
|      $      CALL DGEMM( 'Transpose', 'Transpose', N, K, L, ONE,
 | |
|      $                  C( M-L+1, 1 ), LDC, V, LDV, ONE, WORK, LDWORK )
 | |
| *
 | |
| *        W( 1:n, 1:k ) = W( 1:n, 1:k ) * T**T  or  W( 1:m, 1:k ) * T
 | |
| *
 | |
|          CALL DTRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K, ONE, T,
 | |
|      $               LDT, WORK, LDWORK )
 | |
| *
 | |
| *        C( 1:k, 1:n ) = C( 1:k, 1:n ) - W( 1:n, 1:k )**T
 | |
| *
 | |
|          DO 30 J = 1, N
 | |
|             DO 20 I = 1, K
 | |
|                C( I, J ) = C( I, J ) - WORK( J, I )
 | |
|    20       CONTINUE
 | |
|    30    CONTINUE
 | |
| *
 | |
| *        C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ...
 | |
| *                            V( 1:k, 1:l )**T * W( 1:n, 1:k )**T
 | |
| *
 | |
|          IF( L.GT.0 )
 | |
|      $      CALL DGEMM( 'Transpose', 'Transpose', L, N, K, -ONE, V, LDV,
 | |
|      $                  WORK, LDWORK, ONE, C( M-L+1, 1 ), LDC )
 | |
| *
 | |
|       ELSE IF( LSAME( SIDE, 'R' ) ) THEN
 | |
| *
 | |
| *        Form  C * H  or  C * H**T
 | |
| *
 | |
| *        W( 1:m, 1:k ) = C( 1:m, 1:k )
 | |
| *
 | |
|          DO 40 J = 1, K
 | |
|             CALL DCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
 | |
|    40    CONTINUE
 | |
| *
 | |
| *        W( 1:m, 1:k ) = W( 1:m, 1:k ) + ...
 | |
| *                        C( 1:m, n-l+1:n ) * V( 1:k, 1:l )**T
 | |
| *
 | |
|          IF( L.GT.0 )
 | |
|      $      CALL DGEMM( 'No transpose', 'Transpose', M, K, L, ONE,
 | |
|      $                  C( 1, N-L+1 ), LDC, V, LDV, ONE, WORK, LDWORK )
 | |
| *
 | |
| *        W( 1:m, 1:k ) = W( 1:m, 1:k ) * T  or  W( 1:m, 1:k ) * T**T
 | |
| *
 | |
|          CALL DTRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K, ONE, T,
 | |
|      $               LDT, WORK, LDWORK )
 | |
| *
 | |
| *        C( 1:m, 1:k ) = C( 1:m, 1:k ) - W( 1:m, 1:k )
 | |
| *
 | |
|          DO 60 J = 1, K
 | |
|             DO 50 I = 1, M
 | |
|                C( I, J ) = C( I, J ) - WORK( I, J )
 | |
|    50       CONTINUE
 | |
|    60    CONTINUE
 | |
| *
 | |
| *        C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ...
 | |
| *                            W( 1:m, 1:k ) * V( 1:k, 1:l )
 | |
| *
 | |
|          IF( L.GT.0 )
 | |
|      $      CALL DGEMM( 'No transpose', 'No transpose', M, L, K, -ONE,
 | |
|      $                  WORK, LDWORK, V, LDV, ONE, C( 1, N-L+1 ), LDC )
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DLARZB
 | |
| *
 | |
|       END
 |