380 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			380 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DLARRJ performs refinement of the initial estimates of the eigenvalues of the matrix T.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DLARRJ + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarrj.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarrj.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarrj.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DLARRJ( N, D, E2, IFIRST, ILAST,
 | |
| *                          RTOL, OFFSET, W, WERR, WORK, IWORK,
 | |
| *                          PIVMIN, SPDIAM, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            IFIRST, ILAST, INFO, N, OFFSET
 | |
| *       DOUBLE PRECISION   PIVMIN, RTOL, SPDIAM
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IWORK( * )
 | |
| *       DOUBLE PRECISION   D( * ), E2( * ), W( * ),
 | |
| *      $                   WERR( * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> Given the initial eigenvalue approximations of T, DLARRJ
 | |
| *> does  bisection to refine the eigenvalues of T,
 | |
| *> W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initial
 | |
| *> guesses for these eigenvalues are input in W, the corresponding estimate
 | |
| *> of the error in these guesses in WERR. During bisection, intervals
 | |
| *> [left, right] are maintained by storing their mid-points and
 | |
| *> semi-widths in the arrays W and WERR respectively.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The N diagonal elements of T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] E2
 | |
| *> \verbatim
 | |
| *>          E2 is DOUBLE PRECISION array, dimension (N-1)
 | |
| *>          The Squares of the (N-1) subdiagonal elements of T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IFIRST
 | |
| *> \verbatim
 | |
| *>          IFIRST is INTEGER
 | |
| *>          The index of the first eigenvalue to be computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ILAST
 | |
| *> \verbatim
 | |
| *>          ILAST is INTEGER
 | |
| *>          The index of the last eigenvalue to be computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RTOL
 | |
| *> \verbatim
 | |
| *>          RTOL is DOUBLE PRECISION
 | |
| *>          Tolerance for the convergence of the bisection intervals.
 | |
| *>          An interval [LEFT,RIGHT] has converged if
 | |
| *>          RIGHT-LEFT < RTOL*MAX(|LEFT|,|RIGHT|).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] OFFSET
 | |
| *> \verbatim
 | |
| *>          OFFSET is INTEGER
 | |
| *>          Offset for the arrays W and WERR, i.e., the IFIRST-OFFSET
 | |
| *>          through ILAST-OFFSET elements of these arrays are to be used.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] W
 | |
| *> \verbatim
 | |
| *>          W is DOUBLE PRECISION array, dimension (N)
 | |
| *>          On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are
 | |
| *>          estimates of the eigenvalues of L D L^T indexed IFIRST through
 | |
| *>          ILAST.
 | |
| *>          On output, these estimates are refined.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] WERR
 | |
| *> \verbatim
 | |
| *>          WERR is DOUBLE PRECISION array, dimension (N)
 | |
| *>          On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET ) are
 | |
| *>          the errors in the estimates of the corresponding elements in W.
 | |
| *>          On output, these errors are refined.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (2*N)
 | |
| *>          Workspace.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (2*N)
 | |
| *>          Workspace.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] PIVMIN
 | |
| *> \verbatim
 | |
| *>          PIVMIN is DOUBLE PRECISION
 | |
| *>          The minimum pivot in the Sturm sequence for T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SPDIAM
 | |
| *> \verbatim
 | |
| *>          SPDIAM is DOUBLE PRECISION
 | |
| *>          The spectral diameter of T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          Error flag.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date June 2017
 | |
| *
 | |
| *> \ingroup OTHERauxiliary
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *> Beresford Parlett, University of California, Berkeley, USA \n
 | |
| *> Jim Demmel, University of California, Berkeley, USA \n
 | |
| *> Inderjit Dhillon, University of Texas, Austin, USA \n
 | |
| *> Osni Marques, LBNL/NERSC, USA \n
 | |
| *> Christof Voemel, University of California, Berkeley, USA
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DLARRJ( N, D, E2, IFIRST, ILAST,
 | |
|      $                   RTOL, OFFSET, W, WERR, WORK, IWORK,
 | |
|      $                   PIVMIN, SPDIAM, INFO )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.7.1) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     June 2017
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            IFIRST, ILAST, INFO, N, OFFSET
 | |
|       DOUBLE PRECISION   PIVMIN, RTOL, SPDIAM
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IWORK( * )
 | |
|       DOUBLE PRECISION   D( * ), E2( * ), W( * ),
 | |
|      $                   WERR( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE, TWO, HALF
 | |
|       PARAMETER        ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
 | |
|      $                   HALF = 0.5D0 )
 | |
|       INTEGER   MAXITR
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            CNT, I, I1, I2, II, ITER, J, K, NEXT, NINT,
 | |
|      $                   OLNINT, P, PREV, SAVI1
 | |
|       DOUBLE PRECISION   DPLUS, FAC, LEFT, MID, RIGHT, S, TMP, WIDTH
 | |
| *
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.LE.0 ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       MAXITR = INT( ( LOG( SPDIAM+PIVMIN )-LOG( PIVMIN ) ) /
 | |
|      $           LOG( TWO ) ) + 2
 | |
| *
 | |
| *     Initialize unconverged intervals in [ WORK(2*I-1), WORK(2*I) ].
 | |
| *     The Sturm Count, Count( WORK(2*I-1) ) is arranged to be I-1, while
 | |
| *     Count( WORK(2*I) ) is stored in IWORK( 2*I ). The integer IWORK( 2*I-1 )
 | |
| *     for an unconverged interval is set to the index of the next unconverged
 | |
| *     interval, and is -1 or 0 for a converged interval. Thus a linked
 | |
| *     list of unconverged intervals is set up.
 | |
| *
 | |
| 
 | |
|       I1 = IFIRST
 | |
|       I2 = ILAST
 | |
| *     The number of unconverged intervals
 | |
|       NINT = 0
 | |
| *     The last unconverged interval found
 | |
|       PREV = 0
 | |
|       DO 75 I = I1, I2
 | |
|          K = 2*I
 | |
|          II = I - OFFSET
 | |
|          LEFT = W( II ) - WERR( II )
 | |
|          MID = W(II)
 | |
|          RIGHT = W( II ) + WERR( II )
 | |
|          WIDTH = RIGHT - MID
 | |
|          TMP = MAX( ABS( LEFT ), ABS( RIGHT ) )
 | |
| 
 | |
| *        The following test prevents the test of converged intervals
 | |
|          IF( WIDTH.LT.RTOL*TMP ) THEN
 | |
| *           This interval has already converged and does not need refinement.
 | |
| *           (Note that the gaps might change through refining the
 | |
| *            eigenvalues, however, they can only get bigger.)
 | |
| *           Remove it from the list.
 | |
|             IWORK( K-1 ) = -1
 | |
| *           Make sure that I1 always points to the first unconverged interval
 | |
|             IF((I.EQ.I1).AND.(I.LT.I2)) I1 = I + 1
 | |
|             IF((PREV.GE.I1).AND.(I.LE.I2)) IWORK( 2*PREV-1 ) = I + 1
 | |
|          ELSE
 | |
| *           unconverged interval found
 | |
|             PREV = I
 | |
| *           Make sure that [LEFT,RIGHT] contains the desired eigenvalue
 | |
| *
 | |
| *           Do while( CNT(LEFT).GT.I-1 )
 | |
| *
 | |
|             FAC = ONE
 | |
|  20         CONTINUE
 | |
|             CNT = 0
 | |
|             S = LEFT
 | |
|             DPLUS = D( 1 ) - S
 | |
|             IF( DPLUS.LT.ZERO ) CNT = CNT + 1
 | |
|             DO 30 J = 2, N
 | |
|                DPLUS = D( J ) - S - E2( J-1 )/DPLUS
 | |
|                IF( DPLUS.LT.ZERO ) CNT = CNT + 1
 | |
|  30         CONTINUE
 | |
|             IF( CNT.GT.I-1 ) THEN
 | |
|                LEFT = LEFT - WERR( II )*FAC
 | |
|                FAC = TWO*FAC
 | |
|                GO TO 20
 | |
|             END IF
 | |
| *
 | |
| *           Do while( CNT(RIGHT).LT.I )
 | |
| *
 | |
|             FAC = ONE
 | |
|  50         CONTINUE
 | |
|             CNT = 0
 | |
|             S = RIGHT
 | |
|             DPLUS = D( 1 ) - S
 | |
|             IF( DPLUS.LT.ZERO ) CNT = CNT + 1
 | |
|             DO 60 J = 2, N
 | |
|                DPLUS = D( J ) - S - E2( J-1 )/DPLUS
 | |
|                IF( DPLUS.LT.ZERO ) CNT = CNT + 1
 | |
|  60         CONTINUE
 | |
|             IF( CNT.LT.I ) THEN
 | |
|                RIGHT = RIGHT + WERR( II )*FAC
 | |
|                FAC = TWO*FAC
 | |
|                GO TO 50
 | |
|             END IF
 | |
|             NINT = NINT + 1
 | |
|             IWORK( K-1 ) = I + 1
 | |
|             IWORK( K ) = CNT
 | |
|          END IF
 | |
|          WORK( K-1 ) = LEFT
 | |
|          WORK( K ) = RIGHT
 | |
|  75   CONTINUE
 | |
| 
 | |
| 
 | |
|       SAVI1 = I1
 | |
| *
 | |
| *     Do while( NINT.GT.0 ), i.e. there are still unconverged intervals
 | |
| *     and while (ITER.LT.MAXITR)
 | |
| *
 | |
|       ITER = 0
 | |
|  80   CONTINUE
 | |
|       PREV = I1 - 1
 | |
|       I = I1
 | |
|       OLNINT = NINT
 | |
| 
 | |
|       DO 100 P = 1, OLNINT
 | |
|          K = 2*I
 | |
|          II = I - OFFSET
 | |
|          NEXT = IWORK( K-1 )
 | |
|          LEFT = WORK( K-1 )
 | |
|          RIGHT = WORK( K )
 | |
|          MID = HALF*( LEFT + RIGHT )
 | |
| 
 | |
| *        semiwidth of interval
 | |
|          WIDTH = RIGHT - MID
 | |
|          TMP = MAX( ABS( LEFT ), ABS( RIGHT ) )
 | |
| 
 | |
|          IF( ( WIDTH.LT.RTOL*TMP ) .OR.
 | |
|      $      (ITER.EQ.MAXITR) )THEN
 | |
| *           reduce number of unconverged intervals
 | |
|             NINT = NINT - 1
 | |
| *           Mark interval as converged.
 | |
|             IWORK( K-1 ) = 0
 | |
|             IF( I1.EQ.I ) THEN
 | |
|                I1 = NEXT
 | |
|             ELSE
 | |
| *              Prev holds the last unconverged interval previously examined
 | |
|                IF(PREV.GE.I1) IWORK( 2*PREV-1 ) = NEXT
 | |
|             END IF
 | |
|             I = NEXT
 | |
|             GO TO 100
 | |
|          END IF
 | |
|          PREV = I
 | |
| *
 | |
| *        Perform one bisection step
 | |
| *
 | |
|          CNT = 0
 | |
|          S = MID
 | |
|          DPLUS = D( 1 ) - S
 | |
|          IF( DPLUS.LT.ZERO ) CNT = CNT + 1
 | |
|          DO 90 J = 2, N
 | |
|             DPLUS = D( J ) - S - E2( J-1 )/DPLUS
 | |
|             IF( DPLUS.LT.ZERO ) CNT = CNT + 1
 | |
|  90      CONTINUE
 | |
|          IF( CNT.LE.I-1 ) THEN
 | |
|             WORK( K-1 ) = MID
 | |
|          ELSE
 | |
|             WORK( K ) = MID
 | |
|          END IF
 | |
|          I = NEXT
 | |
| 
 | |
|  100  CONTINUE
 | |
|       ITER = ITER + 1
 | |
| *     do another loop if there are still unconverged intervals
 | |
| *     However, in the last iteration, all intervals are accepted
 | |
| *     since this is the best we can do.
 | |
|       IF( ( NINT.GT.0 ).AND.(ITER.LE.MAXITR) ) GO TO 80
 | |
| *
 | |
| *
 | |
| *     At this point, all the intervals have converged
 | |
|       DO 110 I = SAVI1, ILAST
 | |
|          K = 2*I
 | |
|          II = I - OFFSET
 | |
| *        All intervals marked by '0' have been refined.
 | |
|          IF( IWORK( K-1 ).EQ.0 ) THEN
 | |
|             W( II ) = HALF*( WORK( K-1 )+WORK( K ) )
 | |
|             WERR( II ) = WORK( K ) - W( II )
 | |
|          END IF
 | |
|  110  CONTINUE
 | |
| *
 | |
| 
 | |
|       RETURN
 | |
| *
 | |
| *     End of DLARRJ
 | |
| *
 | |
|       END
 |