905 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			905 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DLARRE given the tridiagonal matrix T, sets small off-diagonal elements to zero and for each unreduced block Ti, finds base representations and eigenvalues.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DLARRE + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarre.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarre.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarre.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DLARRE( RANGE, N, VL, VU, IL, IU, D, E, E2,
 | |
| *                           RTOL1, RTOL2, SPLTOL, NSPLIT, ISPLIT, M,
 | |
| *                           W, WERR, WGAP, IBLOCK, INDEXW, GERS, PIVMIN,
 | |
| *                           WORK, IWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          RANGE
 | |
| *       INTEGER            IL, INFO, IU, M, N, NSPLIT
 | |
| *       DOUBLE PRECISION  PIVMIN, RTOL1, RTOL2, SPLTOL, VL, VU
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IBLOCK( * ), ISPLIT( * ), IWORK( * ),
 | |
| *      $                   INDEXW( * )
 | |
| *       DOUBLE PRECISION   D( * ), E( * ), E2( * ), GERS( * ),
 | |
| *      $                   W( * ),WERR( * ), WGAP( * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> To find the desired eigenvalues of a given real symmetric
 | |
| *> tridiagonal matrix T, DLARRE sets any "small" off-diagonal
 | |
| *> elements to zero, and for each unreduced block T_i, it finds
 | |
| *> (a) a suitable shift at one end of the block's spectrum,
 | |
| *> (b) the base representation, T_i - sigma_i I = L_i D_i L_i^T, and
 | |
| *> (c) eigenvalues of each L_i D_i L_i^T.
 | |
| *> The representations and eigenvalues found are then used by
 | |
| *> DSTEMR to compute the eigenvectors of T.
 | |
| *> The accuracy varies depending on whether bisection is used to
 | |
| *> find a few eigenvalues or the dqds algorithm (subroutine DLASQ2) to
 | |
| *> conpute all and then discard any unwanted one.
 | |
| *> As an added benefit, DLARRE also outputs the n
 | |
| *> Gerschgorin intervals for the matrices L_i D_i L_i^T.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] RANGE
 | |
| *> \verbatim
 | |
| *>          RANGE is CHARACTER*1
 | |
| *>          = 'A': ("All")   all eigenvalues will be found.
 | |
| *>          = 'V': ("Value") all eigenvalues in the half-open interval
 | |
| *>                           (VL, VU] will be found.
 | |
| *>          = 'I': ("Index") the IL-th through IU-th eigenvalues (of the
 | |
| *>                           entire matrix) will be found.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix. N > 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] VL
 | |
| *> \verbatim
 | |
| *>          VL is DOUBLE PRECISION
 | |
| *>          If RANGE='V', the lower bound for the eigenvalues.
 | |
| *>          Eigenvalues less than or equal to VL, or greater than VU,
 | |
| *>          will not be returned.  VL < VU.
 | |
| *>          If RANGE='I' or ='A', DLARRE computes bounds on the desired
 | |
| *>          part of the spectrum.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] VU
 | |
| *> \verbatim
 | |
| *>          VU is DOUBLE PRECISION
 | |
| *>          If RANGE='V', the upper bound for the eigenvalues.
 | |
| *>          Eigenvalues less than or equal to VL, or greater than VU,
 | |
| *>          will not be returned.  VL < VU.
 | |
| *>          If RANGE='I' or ='A', DLARRE computes bounds on the desired
 | |
| *>          part of the spectrum.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IL
 | |
| *> \verbatim
 | |
| *>          IL is INTEGER
 | |
| *>          If RANGE='I', the index of the
 | |
| *>          smallest eigenvalue to be returned.
 | |
| *>          1 <= IL <= IU <= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IU
 | |
| *> \verbatim
 | |
| *>          IU is INTEGER
 | |
| *>          If RANGE='I', the index of the
 | |
| *>          largest eigenvalue to be returned.
 | |
| *>          1 <= IL <= IU <= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension (N)
 | |
| *>          On entry, the N diagonal elements of the tridiagonal
 | |
| *>          matrix T.
 | |
| *>          On exit, the N diagonal elements of the diagonal
 | |
| *>          matrices D_i.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] E
 | |
| *> \verbatim
 | |
| *>          E is DOUBLE PRECISION array, dimension (N)
 | |
| *>          On entry, the first (N-1) entries contain the subdiagonal
 | |
| *>          elements of the tridiagonal matrix T; E(N) need not be set.
 | |
| *>          On exit, E contains the subdiagonal elements of the unit
 | |
| *>          bidiagonal matrices L_i. The entries E( ISPLIT( I ) ),
 | |
| *>          1 <= I <= NSPLIT, contain the base points sigma_i on output.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] E2
 | |
| *> \verbatim
 | |
| *>          E2 is DOUBLE PRECISION array, dimension (N)
 | |
| *>          On entry, the first (N-1) entries contain the SQUARES of the
 | |
| *>          subdiagonal elements of the tridiagonal matrix T;
 | |
| *>          E2(N) need not be set.
 | |
| *>          On exit, the entries E2( ISPLIT( I ) ),
 | |
| *>          1 <= I <= NSPLIT, have been set to zero
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RTOL1
 | |
| *> \verbatim
 | |
| *>          RTOL1 is DOUBLE PRECISION
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RTOL2
 | |
| *> \verbatim
 | |
| *>          RTOL2 is DOUBLE PRECISION
 | |
| *>           Parameters for bisection.
 | |
| *>           An interval [LEFT,RIGHT] has converged if
 | |
| *>           RIGHT-LEFT < MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SPLTOL
 | |
| *> \verbatim
 | |
| *>          SPLTOL is DOUBLE PRECISION
 | |
| *>          The threshold for splitting.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] NSPLIT
 | |
| *> \verbatim
 | |
| *>          NSPLIT is INTEGER
 | |
| *>          The number of blocks T splits into. 1 <= NSPLIT <= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ISPLIT
 | |
| *> \verbatim
 | |
| *>          ISPLIT is INTEGER array, dimension (N)
 | |
| *>          The splitting points, at which T breaks up into blocks.
 | |
| *>          The first block consists of rows/columns 1 to ISPLIT(1),
 | |
| *>          the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),
 | |
| *>          etc., and the NSPLIT-th consists of rows/columns
 | |
| *>          ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The total number of eigenvalues (of all L_i D_i L_i^T)
 | |
| *>          found.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] W
 | |
| *> \verbatim
 | |
| *>          W is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The first M elements contain the eigenvalues. The
 | |
| *>          eigenvalues of each of the blocks, L_i D_i L_i^T, are
 | |
| *>          sorted in ascending order ( DLARRE may use the
 | |
| *>          remaining N-M elements as workspace).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WERR
 | |
| *> \verbatim
 | |
| *>          WERR is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The error bound on the corresponding eigenvalue in W.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WGAP
 | |
| *> \verbatim
 | |
| *>          WGAP is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The separation from the right neighbor eigenvalue in W.
 | |
| *>          The gap is only with respect to the eigenvalues of the same block
 | |
| *>          as each block has its own representation tree.
 | |
| *>          Exception: at the right end of a block we store the left gap
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IBLOCK
 | |
| *> \verbatim
 | |
| *>          IBLOCK is INTEGER array, dimension (N)
 | |
| *>          The indices of the blocks (submatrices) associated with the
 | |
| *>          corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
 | |
| *>          W(i) belongs to the first block from the top, =2 if W(i)
 | |
| *>          belongs to the second block, etc.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INDEXW
 | |
| *> \verbatim
 | |
| *>          INDEXW is INTEGER array, dimension (N)
 | |
| *>          The indices of the eigenvalues within each block (submatrix);
 | |
| *>          for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
 | |
| *>          i-th eigenvalue W(i) is the 10-th eigenvalue in block 2
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] GERS
 | |
| *> \verbatim
 | |
| *>          GERS is DOUBLE PRECISION array, dimension (2*N)
 | |
| *>          The N Gerschgorin intervals (the i-th Gerschgorin interval
 | |
| *>          is (GERS(2*i-1), GERS(2*i)).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] PIVMIN
 | |
| *> \verbatim
 | |
| *>          PIVMIN is DOUBLE PRECISION
 | |
| *>          The minimum pivot in the Sturm sequence for T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (6*N)
 | |
| *>          Workspace.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (5*N)
 | |
| *>          Workspace.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          > 0:  A problem occurred in DLARRE.
 | |
| *>          < 0:  One of the called subroutines signaled an internal problem.
 | |
| *>                Needs inspection of the corresponding parameter IINFO
 | |
| *>                for further information.
 | |
| *>
 | |
| *>          =-1:  Problem in DLARRD.
 | |
| *>          = 2:  No base representation could be found in MAXTRY iterations.
 | |
| *>                Increasing MAXTRY and recompilation might be a remedy.
 | |
| *>          =-3:  Problem in DLARRB when computing the refined root
 | |
| *>                representation for DLASQ2.
 | |
| *>          =-4:  Problem in DLARRB when preforming bisection on the
 | |
| *>                desired part of the spectrum.
 | |
| *>          =-5:  Problem in DLASQ2.
 | |
| *>          =-6:  Problem in DLASQ2.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date June 2016
 | |
| *
 | |
| *> \ingroup OTHERauxiliary
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The base representations are required to suffer very little
 | |
| *>  element growth and consequently define all their eigenvalues to
 | |
| *>  high relative accuracy.
 | |
| *> \endverbatim
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Beresford Parlett, University of California, Berkeley, USA \n
 | |
| *>     Jim Demmel, University of California, Berkeley, USA \n
 | |
| *>     Inderjit Dhillon, University of Texas, Austin, USA \n
 | |
| *>     Osni Marques, LBNL/NERSC, USA \n
 | |
| *>     Christof Voemel, University of California, Berkeley, USA \n
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DLARRE( RANGE, N, VL, VU, IL, IU, D, E, E2,
 | |
|      $                    RTOL1, RTOL2, SPLTOL, NSPLIT, ISPLIT, M,
 | |
|      $                    W, WERR, WGAP, IBLOCK, INDEXW, GERS, PIVMIN,
 | |
|      $                    WORK, IWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.8.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     June 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          RANGE
 | |
|       INTEGER            IL, INFO, IU, M, N, NSPLIT
 | |
|       DOUBLE PRECISION  PIVMIN, RTOL1, RTOL2, SPLTOL, VL, VU
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IBLOCK( * ), ISPLIT( * ), IWORK( * ),
 | |
|      $                   INDEXW( * )
 | |
|       DOUBLE PRECISION   D( * ), E( * ), E2( * ), GERS( * ),
 | |
|      $                   W( * ),WERR( * ), WGAP( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   FAC, FOUR, FOURTH, FUDGE, HALF, HNDRD,
 | |
|      $                   MAXGROWTH, ONE, PERT, TWO, ZERO
 | |
|       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0,
 | |
|      $                     TWO = 2.0D0, FOUR=4.0D0,
 | |
|      $                     HNDRD = 100.0D0,
 | |
|      $                     PERT = 8.0D0,
 | |
|      $                     HALF = ONE/TWO, FOURTH = ONE/FOUR, FAC= HALF,
 | |
|      $                     MAXGROWTH = 64.0D0, FUDGE = 2.0D0 )
 | |
|       INTEGER            MAXTRY, ALLRNG, INDRNG, VALRNG
 | |
|       PARAMETER          ( MAXTRY = 6, ALLRNG = 1, INDRNG = 2,
 | |
|      $                     VALRNG = 3 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            FORCEB, NOREP, USEDQD
 | |
|       INTEGER            CNT, CNT1, CNT2, I, IBEGIN, IDUM, IEND, IINFO,
 | |
|      $                   IN, INDL, INDU, IRANGE, J, JBLK, MB, MM,
 | |
|      $                   WBEGIN, WEND
 | |
|       DOUBLE PRECISION   AVGAP, BSRTOL, CLWDTH, DMAX, DPIVOT, EABS,
 | |
|      $                   EMAX, EOLD, EPS, GL, GU, ISLEFT, ISRGHT, RTL,
 | |
|      $                   RTOL, S1, S2, SAFMIN, SGNDEF, SIGMA, SPDIAM,
 | |
|      $                   TAU, TMP, TMP1
 | |
| 
 | |
| 
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            ISEED( 4 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       DOUBLE PRECISION            DLAMCH
 | |
|       EXTERNAL           DLAMCH, LSAME
 | |
| 
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DCOPY, DLARNV, DLARRA, DLARRB, DLARRC, DLARRD,
 | |
|      $                   DLASQ2, DLARRK
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN
 | |
| 
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| 
 | |
|       INFO = 0
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.LE.0 ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Decode RANGE
 | |
| *
 | |
|       IF( LSAME( RANGE, 'A' ) ) THEN
 | |
|          IRANGE = ALLRNG
 | |
|       ELSE IF( LSAME( RANGE, 'V' ) ) THEN
 | |
|          IRANGE = VALRNG
 | |
|       ELSE IF( LSAME( RANGE, 'I' ) ) THEN
 | |
|          IRANGE = INDRNG
 | |
|       END IF
 | |
| 
 | |
|       M = 0
 | |
| 
 | |
| *     Get machine constants
 | |
|       SAFMIN = DLAMCH( 'S' )
 | |
|       EPS = DLAMCH( 'P' )
 | |
| 
 | |
| *     Set parameters
 | |
|       RTL = SQRT(EPS)
 | |
|       BSRTOL = SQRT(EPS)
 | |
| 
 | |
| *     Treat case of 1x1 matrix for quick return
 | |
|       IF( N.EQ.1 ) THEN
 | |
|          IF( (IRANGE.EQ.ALLRNG).OR.
 | |
|      $       ((IRANGE.EQ.VALRNG).AND.(D(1).GT.VL).AND.(D(1).LE.VU)).OR.
 | |
|      $       ((IRANGE.EQ.INDRNG).AND.(IL.EQ.1).AND.(IU.EQ.1)) ) THEN
 | |
|             M = 1
 | |
|             W(1) = D(1)
 | |
| *           The computation error of the eigenvalue is zero
 | |
|             WERR(1) = ZERO
 | |
|             WGAP(1) = ZERO
 | |
|             IBLOCK( 1 ) = 1
 | |
|             INDEXW( 1 ) = 1
 | |
|             GERS(1) = D( 1 )
 | |
|             GERS(2) = D( 1 )
 | |
|          ENDIF
 | |
| *        store the shift for the initial RRR, which is zero in this case
 | |
|          E(1) = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| 
 | |
| *     General case: tridiagonal matrix of order > 1
 | |
| *
 | |
| *     Init WERR, WGAP. Compute Gerschgorin intervals and spectral diameter.
 | |
| *     Compute maximum off-diagonal entry and pivmin.
 | |
|       GL = D(1)
 | |
|       GU = D(1)
 | |
|       EOLD = ZERO
 | |
|       EMAX = ZERO
 | |
|       E(N) = ZERO
 | |
|       DO 5 I = 1,N
 | |
|          WERR(I) = ZERO
 | |
|          WGAP(I) = ZERO
 | |
|          EABS = ABS( E(I) )
 | |
|          IF( EABS .GE. EMAX ) THEN
 | |
|             EMAX = EABS
 | |
|          END IF
 | |
|          TMP1 = EABS + EOLD
 | |
|          GERS( 2*I-1) = D(I) - TMP1
 | |
|          GL =  MIN( GL, GERS( 2*I - 1))
 | |
|          GERS( 2*I ) = D(I) + TMP1
 | |
|          GU = MAX( GU, GERS(2*I) )
 | |
|          EOLD  = EABS
 | |
|  5    CONTINUE
 | |
| *     The minimum pivot allowed in the Sturm sequence for T
 | |
|       PIVMIN = SAFMIN * MAX( ONE, EMAX**2 )
 | |
| *     Compute spectral diameter. The Gerschgorin bounds give an
 | |
| *     estimate that is wrong by at most a factor of SQRT(2)
 | |
|       SPDIAM = GU - GL
 | |
| 
 | |
| *     Compute splitting points
 | |
|       CALL DLARRA( N, D, E, E2, SPLTOL, SPDIAM,
 | |
|      $                    NSPLIT, ISPLIT, IINFO )
 | |
| 
 | |
| *     Can force use of bisection instead of faster DQDS.
 | |
| *     Option left in the code for future multisection work.
 | |
|       FORCEB = .FALSE.
 | |
| 
 | |
| *     Initialize USEDQD, DQDS should be used for ALLRNG unless someone
 | |
| *     explicitly wants bisection.
 | |
|       USEDQD = (( IRANGE.EQ.ALLRNG ) .AND. (.NOT.FORCEB))
 | |
| 
 | |
|       IF( (IRANGE.EQ.ALLRNG) .AND. (.NOT. FORCEB) ) THEN
 | |
| *        Set interval [VL,VU] that contains all eigenvalues
 | |
|          VL = GL
 | |
|          VU = GU
 | |
|       ELSE
 | |
| *        We call DLARRD to find crude approximations to the eigenvalues
 | |
| *        in the desired range. In case IRANGE = INDRNG, we also obtain the
 | |
| *        interval (VL,VU] that contains all the wanted eigenvalues.
 | |
| *        An interval [LEFT,RIGHT] has converged if
 | |
| *        RIGHT-LEFT.LT.RTOL*MAX(ABS(LEFT),ABS(RIGHT))
 | |
| *        DLARRD needs a WORK of size 4*N, IWORK of size 3*N
 | |
|          CALL DLARRD( RANGE, 'B', N, VL, VU, IL, IU, GERS,
 | |
|      $                    BSRTOL, D, E, E2, PIVMIN, NSPLIT, ISPLIT,
 | |
|      $                    MM, W, WERR, VL, VU, IBLOCK, INDEXW,
 | |
|      $                    WORK, IWORK, IINFO )
 | |
|          IF( IINFO.NE.0 ) THEN
 | |
|             INFO = -1
 | |
|             RETURN
 | |
|          ENDIF
 | |
| *        Make sure that the entries M+1 to N in W, WERR, IBLOCK, INDEXW are 0
 | |
|          DO 14 I = MM+1,N
 | |
|             W( I ) = ZERO
 | |
|             WERR( I ) = ZERO
 | |
|             IBLOCK( I ) = 0
 | |
|             INDEXW( I ) = 0
 | |
|  14      CONTINUE
 | |
|       END IF
 | |
| 
 | |
| 
 | |
| ***
 | |
| *     Loop over unreduced blocks
 | |
|       IBEGIN = 1
 | |
|       WBEGIN = 1
 | |
|       DO 170 JBLK = 1, NSPLIT
 | |
|          IEND = ISPLIT( JBLK )
 | |
|          IN = IEND - IBEGIN + 1
 | |
| 
 | |
| *        1 X 1 block
 | |
|          IF( IN.EQ.1 ) THEN
 | |
|             IF( (IRANGE.EQ.ALLRNG).OR.( (IRANGE.EQ.VALRNG).AND.
 | |
|      $         ( D( IBEGIN ).GT.VL ).AND.( D( IBEGIN ).LE.VU ) )
 | |
|      $        .OR. ( (IRANGE.EQ.INDRNG).AND.(IBLOCK(WBEGIN).EQ.JBLK))
 | |
|      $        ) THEN
 | |
|                M = M + 1
 | |
|                W( M ) = D( IBEGIN )
 | |
|                WERR(M) = ZERO
 | |
| *              The gap for a single block doesn't matter for the later
 | |
| *              algorithm and is assigned an arbitrary large value
 | |
|                WGAP(M) = ZERO
 | |
|                IBLOCK( M ) = JBLK
 | |
|                INDEXW( M ) = 1
 | |
|                WBEGIN = WBEGIN + 1
 | |
|             ENDIF
 | |
| *           E( IEND ) holds the shift for the initial RRR
 | |
|             E( IEND ) = ZERO
 | |
|             IBEGIN = IEND + 1
 | |
|             GO TO 170
 | |
|          END IF
 | |
| *
 | |
| *        Blocks of size larger than 1x1
 | |
| *
 | |
| *        E( IEND ) will hold the shift for the initial RRR, for now set it =0
 | |
|          E( IEND ) = ZERO
 | |
| *
 | |
| *        Find local outer bounds GL,GU for the block
 | |
|          GL = D(IBEGIN)
 | |
|          GU = D(IBEGIN)
 | |
|          DO 15 I = IBEGIN , IEND
 | |
|             GL = MIN( GERS( 2*I-1 ), GL )
 | |
|             GU = MAX( GERS( 2*I ), GU )
 | |
|  15      CONTINUE
 | |
|          SPDIAM = GU - GL
 | |
| 
 | |
|          IF(.NOT. ((IRANGE.EQ.ALLRNG).AND.(.NOT.FORCEB)) ) THEN
 | |
| *           Count the number of eigenvalues in the current block.
 | |
|             MB = 0
 | |
|             DO 20 I = WBEGIN,MM
 | |
|                IF( IBLOCK(I).EQ.JBLK ) THEN
 | |
|                   MB = MB+1
 | |
|                ELSE
 | |
|                   GOTO 21
 | |
|                ENDIF
 | |
|  20         CONTINUE
 | |
|  21         CONTINUE
 | |
| 
 | |
|             IF( MB.EQ.0) THEN
 | |
| *              No eigenvalue in the current block lies in the desired range
 | |
| *              E( IEND ) holds the shift for the initial RRR
 | |
|                E( IEND ) = ZERO
 | |
|                IBEGIN = IEND + 1
 | |
|                GO TO 170
 | |
|             ELSE
 | |
| 
 | |
| *              Decide whether dqds or bisection is more efficient
 | |
|                USEDQD = ( (MB .GT. FAC*IN) .AND. (.NOT.FORCEB) )
 | |
|                WEND = WBEGIN + MB - 1
 | |
| *              Calculate gaps for the current block
 | |
| *              In later stages, when representations for individual
 | |
| *              eigenvalues are different, we use SIGMA = E( IEND ).
 | |
|                SIGMA = ZERO
 | |
|                DO 30 I = WBEGIN, WEND - 1
 | |
|                   WGAP( I ) = MAX( ZERO,
 | |
|      $                        W(I+1)-WERR(I+1) - (W(I)+WERR(I)) )
 | |
|  30            CONTINUE
 | |
|                WGAP( WEND ) = MAX( ZERO,
 | |
|      $                     VU - SIGMA - (W( WEND )+WERR( WEND )))
 | |
| *              Find local index of the first and last desired evalue.
 | |
|                INDL = INDEXW(WBEGIN)
 | |
|                INDU = INDEXW( WEND )
 | |
|             ENDIF
 | |
|          ENDIF
 | |
|          IF(( (IRANGE.EQ.ALLRNG) .AND. (.NOT. FORCEB) ).OR.USEDQD) THEN
 | |
| *           Case of DQDS
 | |
| *           Find approximations to the extremal eigenvalues of the block
 | |
|             CALL DLARRK( IN, 1, GL, GU, D(IBEGIN),
 | |
|      $               E2(IBEGIN), PIVMIN, RTL, TMP, TMP1, IINFO )
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                INFO = -1
 | |
|                RETURN
 | |
|             ENDIF
 | |
|             ISLEFT = MAX(GL, TMP - TMP1
 | |
|      $               - HNDRD * EPS* ABS(TMP - TMP1))
 | |
| 
 | |
|             CALL DLARRK( IN, IN, GL, GU, D(IBEGIN),
 | |
|      $               E2(IBEGIN), PIVMIN, RTL, TMP, TMP1, IINFO )
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                INFO = -1
 | |
|                RETURN
 | |
|             ENDIF
 | |
|             ISRGHT = MIN(GU, TMP + TMP1
 | |
|      $                 + HNDRD * EPS * ABS(TMP + TMP1))
 | |
| *           Improve the estimate of the spectral diameter
 | |
|             SPDIAM = ISRGHT - ISLEFT
 | |
|          ELSE
 | |
| *           Case of bisection
 | |
| *           Find approximations to the wanted extremal eigenvalues
 | |
|             ISLEFT = MAX(GL, W(WBEGIN) - WERR(WBEGIN)
 | |
|      $                  - HNDRD * EPS*ABS(W(WBEGIN)- WERR(WBEGIN) ))
 | |
|             ISRGHT = MIN(GU,W(WEND) + WERR(WEND)
 | |
|      $                  + HNDRD * EPS * ABS(W(WEND)+ WERR(WEND)))
 | |
|          ENDIF
 | |
| 
 | |
| 
 | |
| *        Decide whether the base representation for the current block
 | |
| *        L_JBLK D_JBLK L_JBLK^T = T_JBLK - sigma_JBLK I
 | |
| *        should be on the left or the right end of the current block.
 | |
| *        The strategy is to shift to the end which is "more populated"
 | |
| *        Furthermore, decide whether to use DQDS for the computation of
 | |
| *        the eigenvalue approximations at the end of DLARRE or bisection.
 | |
| *        dqds is chosen if all eigenvalues are desired or the number of
 | |
| *        eigenvalues to be computed is large compared to the blocksize.
 | |
|          IF( ( IRANGE.EQ.ALLRNG ) .AND. (.NOT.FORCEB) ) THEN
 | |
| *           If all the eigenvalues have to be computed, we use dqd
 | |
|             USEDQD = .TRUE.
 | |
| *           INDL is the local index of the first eigenvalue to compute
 | |
|             INDL = 1
 | |
|             INDU = IN
 | |
| *           MB =  number of eigenvalues to compute
 | |
|             MB = IN
 | |
|             WEND = WBEGIN + MB - 1
 | |
| *           Define 1/4 and 3/4 points of the spectrum
 | |
|             S1 = ISLEFT + FOURTH * SPDIAM
 | |
|             S2 = ISRGHT - FOURTH * SPDIAM
 | |
|          ELSE
 | |
| *           DLARRD has computed IBLOCK and INDEXW for each eigenvalue
 | |
| *           approximation.
 | |
| *           choose sigma
 | |
|             IF( USEDQD ) THEN
 | |
|                S1 = ISLEFT + FOURTH * SPDIAM
 | |
|                S2 = ISRGHT - FOURTH * SPDIAM
 | |
|             ELSE
 | |
|                TMP = MIN(ISRGHT,VU) -  MAX(ISLEFT,VL)
 | |
|                S1 =  MAX(ISLEFT,VL) + FOURTH * TMP
 | |
|                S2 =  MIN(ISRGHT,VU) - FOURTH * TMP
 | |
|             ENDIF
 | |
|          ENDIF
 | |
| 
 | |
| *        Compute the negcount at the 1/4 and 3/4 points
 | |
|          IF(MB.GT.1) THEN
 | |
|             CALL DLARRC( 'T', IN, S1, S2, D(IBEGIN),
 | |
|      $                    E(IBEGIN), PIVMIN, CNT, CNT1, CNT2, IINFO)
 | |
|          ENDIF
 | |
| 
 | |
|          IF(MB.EQ.1) THEN
 | |
|             SIGMA = GL
 | |
|             SGNDEF = ONE
 | |
|          ELSEIF( CNT1 - INDL .GE. INDU - CNT2 ) THEN
 | |
|             IF( ( IRANGE.EQ.ALLRNG ) .AND. (.NOT.FORCEB) ) THEN
 | |
|                SIGMA = MAX(ISLEFT,GL)
 | |
|             ELSEIF( USEDQD ) THEN
 | |
| *              use Gerschgorin bound as shift to get pos def matrix
 | |
| *              for dqds
 | |
|                SIGMA = ISLEFT
 | |
|             ELSE
 | |
| *              use approximation of the first desired eigenvalue of the
 | |
| *              block as shift
 | |
|                SIGMA = MAX(ISLEFT,VL)
 | |
|             ENDIF
 | |
|             SGNDEF = ONE
 | |
|          ELSE
 | |
|             IF( ( IRANGE.EQ.ALLRNG ) .AND. (.NOT.FORCEB) ) THEN
 | |
|                SIGMA = MIN(ISRGHT,GU)
 | |
|             ELSEIF( USEDQD ) THEN
 | |
| *              use Gerschgorin bound as shift to get neg def matrix
 | |
| *              for dqds
 | |
|                SIGMA = ISRGHT
 | |
|             ELSE
 | |
| *              use approximation of the first desired eigenvalue of the
 | |
| *              block as shift
 | |
|                SIGMA = MIN(ISRGHT,VU)
 | |
|             ENDIF
 | |
|             SGNDEF = -ONE
 | |
|          ENDIF
 | |
| 
 | |
| 
 | |
| *        An initial SIGMA has been chosen that will be used for computing
 | |
| *        T - SIGMA I = L D L^T
 | |
| *        Define the increment TAU of the shift in case the initial shift
 | |
| *        needs to be refined to obtain a factorization with not too much
 | |
| *        element growth.
 | |
|          IF( USEDQD ) THEN
 | |
| *           The initial SIGMA was to the outer end of the spectrum
 | |
| *           the matrix is definite and we need not retreat.
 | |
|             TAU = SPDIAM*EPS*N + TWO*PIVMIN
 | |
|             TAU = MAX( TAU,TWO*EPS*ABS(SIGMA) )
 | |
|          ELSE
 | |
|             IF(MB.GT.1) THEN
 | |
|                CLWDTH = W(WEND) + WERR(WEND) - W(WBEGIN) - WERR(WBEGIN)
 | |
|                AVGAP = ABS(CLWDTH / DBLE(WEND-WBEGIN))
 | |
|                IF( SGNDEF.EQ.ONE ) THEN
 | |
|                   TAU = HALF*MAX(WGAP(WBEGIN),AVGAP)
 | |
|                   TAU = MAX(TAU,WERR(WBEGIN))
 | |
|                ELSE
 | |
|                   TAU = HALF*MAX(WGAP(WEND-1),AVGAP)
 | |
|                   TAU = MAX(TAU,WERR(WEND))
 | |
|                ENDIF
 | |
|             ELSE
 | |
|                TAU = WERR(WBEGIN)
 | |
|             ENDIF
 | |
|          ENDIF
 | |
| *
 | |
|          DO 80 IDUM = 1, MAXTRY
 | |
| *           Compute L D L^T factorization of tridiagonal matrix T - sigma I.
 | |
| *           Store D in WORK(1:IN), L in WORK(IN+1:2*IN), and reciprocals of
 | |
| *           pivots in WORK(2*IN+1:3*IN)
 | |
|             DPIVOT = D( IBEGIN ) - SIGMA
 | |
|             WORK( 1 ) = DPIVOT
 | |
|             DMAX = ABS( WORK(1) )
 | |
|             J = IBEGIN
 | |
|             DO 70 I = 1, IN - 1
 | |
|                WORK( 2*IN+I ) = ONE / WORK( I )
 | |
|                TMP = E( J )*WORK( 2*IN+I )
 | |
|                WORK( IN+I ) = TMP
 | |
|                DPIVOT = ( D( J+1 )-SIGMA ) - TMP*E( J )
 | |
|                WORK( I+1 ) = DPIVOT
 | |
|                DMAX = MAX( DMAX, ABS(DPIVOT) )
 | |
|                J = J + 1
 | |
|  70         CONTINUE
 | |
| *           check for element growth
 | |
|             IF( DMAX .GT. MAXGROWTH*SPDIAM ) THEN
 | |
|                NOREP = .TRUE.
 | |
|             ELSE
 | |
|                NOREP = .FALSE.
 | |
|             ENDIF
 | |
|             IF( USEDQD .AND. .NOT.NOREP ) THEN
 | |
| *              Ensure the definiteness of the representation
 | |
| *              All entries of D (of L D L^T) must have the same sign
 | |
|                DO 71 I = 1, IN
 | |
|                   TMP = SGNDEF*WORK( I )
 | |
|                   IF( TMP.LT.ZERO ) NOREP = .TRUE.
 | |
|  71            CONTINUE
 | |
|             ENDIF
 | |
|             IF(NOREP) THEN
 | |
| *              Note that in the case of IRANGE=ALLRNG, we use the Gerschgorin
 | |
| *              shift which makes the matrix definite. So we should end up
 | |
| *              here really only in the case of IRANGE = VALRNG or INDRNG.
 | |
|                IF( IDUM.EQ.MAXTRY-1 ) THEN
 | |
|                   IF( SGNDEF.EQ.ONE ) THEN
 | |
| *                    The fudged Gerschgorin shift should succeed
 | |
|                      SIGMA =
 | |
|      $                    GL - FUDGE*SPDIAM*EPS*N - FUDGE*TWO*PIVMIN
 | |
|                   ELSE
 | |
|                      SIGMA =
 | |
|      $                    GU + FUDGE*SPDIAM*EPS*N + FUDGE*TWO*PIVMIN
 | |
|                   END IF
 | |
|                ELSE
 | |
|                   SIGMA = SIGMA - SGNDEF * TAU
 | |
|                   TAU = TWO * TAU
 | |
|                END IF
 | |
|             ELSE
 | |
| *              an initial RRR is found
 | |
|                GO TO 83
 | |
|             END IF
 | |
|  80      CONTINUE
 | |
| *        if the program reaches this point, no base representation could be
 | |
| *        found in MAXTRY iterations.
 | |
|          INFO = 2
 | |
|          RETURN
 | |
| 
 | |
|  83      CONTINUE
 | |
| *        At this point, we have found an initial base representation
 | |
| *        T - SIGMA I = L D L^T with not too much element growth.
 | |
| *        Store the shift.
 | |
|          E( IEND ) = SIGMA
 | |
| *        Store D and L.
 | |
|          CALL DCOPY( IN, WORK, 1, D( IBEGIN ), 1 )
 | |
|          CALL DCOPY( IN-1, WORK( IN+1 ), 1, E( IBEGIN ), 1 )
 | |
| 
 | |
| 
 | |
|          IF(MB.GT.1 ) THEN
 | |
| *
 | |
| *           Perturb each entry of the base representation by a small
 | |
| *           (but random) relative amount to overcome difficulties with
 | |
| *           glued matrices.
 | |
| *
 | |
|             DO 122 I = 1, 4
 | |
|                ISEED( I ) = 1
 | |
|  122        CONTINUE
 | |
| 
 | |
|             CALL DLARNV(2, ISEED, 2*IN-1, WORK(1))
 | |
|             DO 125 I = 1,IN-1
 | |
|                D(IBEGIN+I-1) = D(IBEGIN+I-1)*(ONE+EPS*PERT*WORK(I))
 | |
|                E(IBEGIN+I-1) = E(IBEGIN+I-1)*(ONE+EPS*PERT*WORK(IN+I))
 | |
|  125        CONTINUE
 | |
|             D(IEND) = D(IEND)*(ONE+EPS*FOUR*WORK(IN))
 | |
| *
 | |
|          ENDIF
 | |
| *
 | |
| *        Don't update the Gerschgorin intervals because keeping track
 | |
| *        of the updates would be too much work in DLARRV.
 | |
| *        We update W instead and use it to locate the proper Gerschgorin
 | |
| *        intervals.
 | |
| 
 | |
| *        Compute the required eigenvalues of L D L' by bisection or dqds
 | |
|          IF ( .NOT.USEDQD ) THEN
 | |
| *           If DLARRD has been used, shift the eigenvalue approximations
 | |
| *           according to their representation. This is necessary for
 | |
| *           a uniform DLARRV since dqds computes eigenvalues of the
 | |
| *           shifted representation. In DLARRV, W will always hold the
 | |
| *           UNshifted eigenvalue approximation.
 | |
|             DO 134 J=WBEGIN,WEND
 | |
|                W(J) = W(J) - SIGMA
 | |
|                WERR(J) = WERR(J) + ABS(W(J)) * EPS
 | |
|  134        CONTINUE
 | |
| *           call DLARRB to reduce eigenvalue error of the approximations
 | |
| *           from DLARRD
 | |
|             DO 135 I = IBEGIN, IEND-1
 | |
|                WORK( I ) = D( I ) * E( I )**2
 | |
|  135        CONTINUE
 | |
| *           use bisection to find EV from INDL to INDU
 | |
|             CALL DLARRB(IN, D(IBEGIN), WORK(IBEGIN),
 | |
|      $                  INDL, INDU, RTOL1, RTOL2, INDL-1,
 | |
|      $                  W(WBEGIN), WGAP(WBEGIN), WERR(WBEGIN),
 | |
|      $                  WORK( 2*N+1 ), IWORK, PIVMIN, SPDIAM,
 | |
|      $                  IN, IINFO )
 | |
|             IF( IINFO .NE. 0 ) THEN
 | |
|                INFO = -4
 | |
|                RETURN
 | |
|             END IF
 | |
| *           DLARRB computes all gaps correctly except for the last one
 | |
| *           Record distance to VU/GU
 | |
|             WGAP( WEND ) = MAX( ZERO,
 | |
|      $           ( VU-SIGMA ) - ( W( WEND ) + WERR( WEND ) ) )
 | |
|             DO 138 I = INDL, INDU
 | |
|                M = M + 1
 | |
|                IBLOCK(M) = JBLK
 | |
|                INDEXW(M) = I
 | |
|  138        CONTINUE
 | |
|          ELSE
 | |
| *           Call dqds to get all eigs (and then possibly delete unwanted
 | |
| *           eigenvalues).
 | |
| *           Note that dqds finds the eigenvalues of the L D L^T representation
 | |
| *           of T to high relative accuracy. High relative accuracy
 | |
| *           might be lost when the shift of the RRR is subtracted to obtain
 | |
| *           the eigenvalues of T. However, T is not guaranteed to define its
 | |
| *           eigenvalues to high relative accuracy anyway.
 | |
| *           Set RTOL to the order of the tolerance used in DLASQ2
 | |
| *           This is an ESTIMATED error, the worst case bound is 4*N*EPS
 | |
| *           which is usually too large and requires unnecessary work to be
 | |
| *           done by bisection when computing the eigenvectors
 | |
|             RTOL = LOG(DBLE(IN)) * FOUR * EPS
 | |
|             J = IBEGIN
 | |
|             DO 140 I = 1, IN - 1
 | |
|                WORK( 2*I-1 ) = ABS( D( J ) )
 | |
|                WORK( 2*I ) = E( J )*E( J )*WORK( 2*I-1 )
 | |
|                J = J + 1
 | |
|   140       CONTINUE
 | |
|             WORK( 2*IN-1 ) = ABS( D( IEND ) )
 | |
|             WORK( 2*IN ) = ZERO
 | |
|             CALL DLASQ2( IN, WORK, IINFO )
 | |
|             IF( IINFO .NE. 0 ) THEN
 | |
| *              If IINFO = -5 then an index is part of a tight cluster
 | |
| *              and should be changed. The index is in IWORK(1) and the
 | |
| *              gap is in WORK(N+1)
 | |
|                INFO = -5
 | |
|                RETURN
 | |
|             ELSE
 | |
| *              Test that all eigenvalues are positive as expected
 | |
|                DO 149 I = 1, IN
 | |
|                   IF( WORK( I ).LT.ZERO ) THEN
 | |
|                      INFO = -6
 | |
|                      RETURN
 | |
|                   ENDIF
 | |
|  149           CONTINUE
 | |
|             END IF
 | |
|             IF( SGNDEF.GT.ZERO ) THEN
 | |
|                DO 150 I = INDL, INDU
 | |
|                   M = M + 1
 | |
|                   W( M ) = WORK( IN-I+1 )
 | |
|                   IBLOCK( M ) = JBLK
 | |
|                   INDEXW( M ) = I
 | |
|  150           CONTINUE
 | |
|             ELSE
 | |
|                DO 160 I = INDL, INDU
 | |
|                   M = M + 1
 | |
|                   W( M ) = -WORK( I )
 | |
|                   IBLOCK( M ) = JBLK
 | |
|                   INDEXW( M ) = I
 | |
|  160           CONTINUE
 | |
|             END IF
 | |
| 
 | |
|             DO 165 I = M - MB + 1, M
 | |
| *              the value of RTOL below should be the tolerance in DLASQ2
 | |
|                WERR( I ) = RTOL * ABS( W(I) )
 | |
|  165        CONTINUE
 | |
|             DO 166 I = M - MB + 1, M - 1
 | |
| *              compute the right gap between the intervals
 | |
|                WGAP( I ) = MAX( ZERO,
 | |
|      $                          W(I+1)-WERR(I+1) - (W(I)+WERR(I)) )
 | |
|  166        CONTINUE
 | |
|             WGAP( M ) = MAX( ZERO,
 | |
|      $           ( VU-SIGMA ) - ( W( M ) + WERR( M ) ) )
 | |
|          END IF
 | |
| *        proceed with next block
 | |
|          IBEGIN = IEND + 1
 | |
|          WBEGIN = WEND + 1
 | |
|  170  CONTINUE
 | |
| *
 | |
| 
 | |
|       RETURN
 | |
| *
 | |
| *     end of DLARRE
 | |
| *
 | |
|       END
 |