740 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			740 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DLAQR4 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur decomposition.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DLAQR4 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr4.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr4.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr4.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DLAQR4( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
 | |
| *                          ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
 | |
| *       LOGICAL            WANTT, WANTZ
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   H( LDH, * ), WI( * ), WORK( * ), WR( * ),
 | |
| *      $                   Z( LDZ, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>    DLAQR4 implements one level of recursion for DLAQR0.
 | |
| *>    It is a complete implementation of the small bulge multi-shift
 | |
| *>    QR algorithm.  It may be called by DLAQR0 and, for large enough
 | |
| *>    deflation window size, it may be called by DLAQR3.  This
 | |
| *>    subroutine is identical to DLAQR0 except that it calls DLAQR2
 | |
| *>    instead of DLAQR3.
 | |
| *>
 | |
| *>    DLAQR4 computes the eigenvalues of a Hessenberg matrix H
 | |
| *>    and, optionally, the matrices T and Z from the Schur decomposition
 | |
| *>    H = Z T Z**T, where T is an upper quasi-triangular matrix (the
 | |
| *>    Schur form), and Z is the orthogonal matrix of Schur vectors.
 | |
| *>
 | |
| *>    Optionally Z may be postmultiplied into an input orthogonal
 | |
| *>    matrix Q so that this routine can give the Schur factorization
 | |
| *>    of a matrix A which has been reduced to the Hessenberg form H
 | |
| *>    by the orthogonal matrix Q:  A = Q*H*Q**T = (QZ)*T*(QZ)**T.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] WANTT
 | |
| *> \verbatim
 | |
| *>          WANTT is LOGICAL
 | |
| *>          = .TRUE. : the full Schur form T is required;
 | |
| *>          = .FALSE.: only eigenvalues are required.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] WANTZ
 | |
| *> \verbatim
 | |
| *>          WANTZ is LOGICAL
 | |
| *>          = .TRUE. : the matrix of Schur vectors Z is required;
 | |
| *>          = .FALSE.: Schur vectors are not required.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>           The order of the matrix H.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ILO
 | |
| *> \verbatim
 | |
| *>          ILO is INTEGER
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IHI
 | |
| *> \verbatim
 | |
| *>          IHI is INTEGER
 | |
| *>           It is assumed that H is already upper triangular in rows
 | |
| *>           and columns 1:ILO-1 and IHI+1:N and, if ILO > 1,
 | |
| *>           H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
 | |
| *>           previous call to DGEBAL, and then passed to DGEHRD when the
 | |
| *>           matrix output by DGEBAL is reduced to Hessenberg form.
 | |
| *>           Otherwise, ILO and IHI should be set to 1 and N,
 | |
| *>           respectively.  If N > 0, then 1 <= ILO <= IHI <= N.
 | |
| *>           If N = 0, then ILO = 1 and IHI = 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] H
 | |
| *> \verbatim
 | |
| *>          H is DOUBLE PRECISION array, dimension (LDH,N)
 | |
| *>           On entry, the upper Hessenberg matrix H.
 | |
| *>           On exit, if INFO = 0 and WANTT is .TRUE., then H contains
 | |
| *>           the upper quasi-triangular matrix T from the Schur
 | |
| *>           decomposition (the Schur form); 2-by-2 diagonal blocks
 | |
| *>           (corresponding to complex conjugate pairs of eigenvalues)
 | |
| *>           are returned in standard form, with H(i,i) = H(i+1,i+1)
 | |
| *>           and H(i+1,i)*H(i,i+1) < 0. If INFO = 0 and WANTT is
 | |
| *>           .FALSE., then the contents of H are unspecified on exit.
 | |
| *>           (The output value of H when INFO > 0 is given under the
 | |
| *>           description of INFO below.)
 | |
| *>
 | |
| *>           This subroutine may explicitly set H(i,j) = 0 for i > j and
 | |
| *>           j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDH
 | |
| *> \verbatim
 | |
| *>          LDH is INTEGER
 | |
| *>           The leading dimension of the array H. LDH >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WR
 | |
| *> \verbatim
 | |
| *>          WR is DOUBLE PRECISION array, dimension (IHI)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WI
 | |
| *> \verbatim
 | |
| *>          WI is DOUBLE PRECISION array, dimension (IHI)
 | |
| *>           The real and imaginary parts, respectively, of the computed
 | |
| *>           eigenvalues of H(ILO:IHI,ILO:IHI) are stored in WR(ILO:IHI)
 | |
| *>           and WI(ILO:IHI). If two eigenvalues are computed as a
 | |
| *>           complex conjugate pair, they are stored in consecutive
 | |
| *>           elements of WR and WI, say the i-th and (i+1)th, with
 | |
| *>           WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., then
 | |
| *>           the eigenvalues are stored in the same order as on the
 | |
| *>           diagonal of the Schur form returned in H, with
 | |
| *>           WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
 | |
| *>           block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
 | |
| *>           WI(i+1) = -WI(i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ILOZ
 | |
| *> \verbatim
 | |
| *>          ILOZ is INTEGER
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IHIZ
 | |
| *> \verbatim
 | |
| *>          IHIZ is INTEGER
 | |
| *>           Specify the rows of Z to which transformations must be
 | |
| *>           applied if WANTZ is .TRUE..
 | |
| *>           1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Z
 | |
| *> \verbatim
 | |
| *>          Z is DOUBLE PRECISION array, dimension (LDZ,IHI)
 | |
| *>           If WANTZ is .FALSE., then Z is not referenced.
 | |
| *>           If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
 | |
| *>           replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
 | |
| *>           orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
 | |
| *>           (The output value of Z when INFO > 0 is given under
 | |
| *>           the description of INFO below.)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>           The leading dimension of the array Z.  if WANTZ is .TRUE.
 | |
| *>           then LDZ >= MAX(1,IHIZ).  Otherwise, LDZ >= 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension LWORK
 | |
| *>           On exit, if LWORK = -1, WORK(1) returns an estimate of
 | |
| *>           the optimal value for LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>           The dimension of the array WORK.  LWORK >= max(1,N)
 | |
| *>           is sufficient, but LWORK typically as large as 6*N may
 | |
| *>           be required for optimal performance.  A workspace query
 | |
| *>           to determine the optimal workspace size is recommended.
 | |
| *>
 | |
| *>           If LWORK = -1, then DLAQR4 does a workspace query.
 | |
| *>           In this case, DLAQR4 checks the input parameters and
 | |
| *>           estimates the optimal workspace size for the given
 | |
| *>           values of N, ILO and IHI.  The estimate is returned
 | |
| *>           in WORK(1).  No error message related to LWORK is
 | |
| *>           issued by XERBLA.  Neither H nor Z are accessed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>             = 0:  successful exit
 | |
| *>             > 0:  if INFO = i, DLAQR4 failed to compute all of
 | |
| *>                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
 | |
| *>                and WI contain those eigenvalues which have been
 | |
| *>                successfully computed.  (Failures are rare.)
 | |
| *>
 | |
| *>                If INFO > 0 and WANT is .FALSE., then on exit,
 | |
| *>                the remaining unconverged eigenvalues are the eigen-
 | |
| *>                values of the upper Hessenberg matrix rows and
 | |
| *>                columns ILO through INFO of the final, output
 | |
| *>                value of H.
 | |
| *>
 | |
| *>                If INFO > 0 and WANTT is .TRUE., then on exit
 | |
| *>
 | |
| *>           (*)  (initial value of H)*U  = U*(final value of H)
 | |
| *>
 | |
| *>                where U is a orthogonal matrix.  The final
 | |
| *>                value of  H is upper Hessenberg and triangular in
 | |
| *>                rows and columns INFO+1 through IHI.
 | |
| *>
 | |
| *>                If INFO > 0 and WANTZ is .TRUE., then on exit
 | |
| *>
 | |
| *>                  (final value of Z(ILO:IHI,ILOZ:IHIZ)
 | |
| *>                   =  (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
 | |
| *>
 | |
| *>                where U is the orthogonal matrix in (*) (regard-
 | |
| *>                less of the value of WANTT.)
 | |
| *>
 | |
| *>                If INFO > 0 and WANTZ is .FALSE., then Z is not
 | |
| *>                accessed.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup doubleOTHERauxiliary
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>       Karen Braman and Ralph Byers, Department of Mathematics,
 | |
| *>       University of Kansas, USA
 | |
| *
 | |
| *> \par References:
 | |
| *  ================
 | |
| *>
 | |
| *>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
 | |
| *>       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
 | |
| *>       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
 | |
| *>       929--947, 2002.
 | |
| *> \n
 | |
| *>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
 | |
| *>       Algorithm Part II: Aggressive Early Deflation, SIAM Journal
 | |
| *>       of Matrix Analysis, volume 23, pages 948--973, 2002.
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DLAQR4( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
 | |
|      $                   ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
 | |
|       LOGICAL            WANTT, WANTZ
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   H( LDH, * ), WI( * ), WORK( * ), WR( * ),
 | |
|      $                   Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  ================================================================
 | |
| *     .. Parameters ..
 | |
| *
 | |
| *     ==== Matrices of order NTINY or smaller must be processed by
 | |
| *     .    DLAHQR because of insufficient subdiagonal scratch space.
 | |
| *     .    (This is a hard limit.) ====
 | |
|       INTEGER            NTINY
 | |
|       PARAMETER          ( NTINY = 15 )
 | |
| *
 | |
| *     ==== Exceptional deflation windows:  try to cure rare
 | |
| *     .    slow convergence by varying the size of the
 | |
| *     .    deflation window after KEXNW iterations. ====
 | |
|       INTEGER            KEXNW
 | |
|       PARAMETER          ( KEXNW = 5 )
 | |
| *
 | |
| *     ==== Exceptional shifts: try to cure rare slow convergence
 | |
| *     .    with ad-hoc exceptional shifts every KEXSH iterations.
 | |
| *     .    ====
 | |
|       INTEGER            KEXSH
 | |
|       PARAMETER          ( KEXSH = 6 )
 | |
| *
 | |
| *     ==== The constants WILK1 and WILK2 are used to form the
 | |
| *     .    exceptional shifts. ====
 | |
|       DOUBLE PRECISION   WILK1, WILK2
 | |
|       PARAMETER          ( WILK1 = 0.75d0, WILK2 = -0.4375d0 )
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       DOUBLE PRECISION   AA, BB, CC, CS, DD, SN, SS, SWAP
 | |
|       INTEGER            I, INF, IT, ITMAX, K, KACC22, KBOT, KDU, KS,
 | |
|      $                   KT, KTOP, KU, KV, KWH, KWTOP, KWV, LD, LS,
 | |
|      $                   LWKOPT, NDEC, NDFL, NH, NHO, NIBBLE, NMIN, NS,
 | |
|      $                   NSMAX, NSR, NVE, NW, NWMAX, NWR, NWUPBD
 | |
|       LOGICAL            SORTED
 | |
|       CHARACTER          JBCMPZ*2
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            ILAENV
 | |
|       EXTERNAL           ILAENV
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       DOUBLE PRECISION   ZDUM( 1, 1 )
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DLACPY, DLAHQR, DLANV2, DLAQR2, DLAQR5
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DBLE, INT, MAX, MIN, MOD
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
|       INFO = 0
 | |
| *
 | |
| *     ==== Quick return for N = 0: nothing to do. ====
 | |
| *
 | |
|       IF( N.EQ.0 ) THEN
 | |
|          WORK( 1 ) = ONE
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       IF( N.LE.NTINY ) THEN
 | |
| *
 | |
| *        ==== Tiny matrices must use DLAHQR. ====
 | |
| *
 | |
|          LWKOPT = 1
 | |
|          IF( LWORK.NE.-1 )
 | |
|      $      CALL DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
 | |
|      $                   ILOZ, IHIZ, Z, LDZ, INFO )
 | |
|       ELSE
 | |
| *
 | |
| *        ==== Use small bulge multi-shift QR with aggressive early
 | |
| *        .    deflation on larger-than-tiny matrices. ====
 | |
| *
 | |
| *        ==== Hope for the best. ====
 | |
| *
 | |
|          INFO = 0
 | |
| *
 | |
| *        ==== Set up job flags for ILAENV. ====
 | |
| *
 | |
|          IF( WANTT ) THEN
 | |
|             JBCMPZ( 1: 1 ) = 'S'
 | |
|          ELSE
 | |
|             JBCMPZ( 1: 1 ) = 'E'
 | |
|          END IF
 | |
|          IF( WANTZ ) THEN
 | |
|             JBCMPZ( 2: 2 ) = 'V'
 | |
|          ELSE
 | |
|             JBCMPZ( 2: 2 ) = 'N'
 | |
|          END IF
 | |
| *
 | |
| *        ==== NWR = recommended deflation window size.  At this
 | |
| *        .    point,  N .GT. NTINY = 15, so there is enough
 | |
| *        .    subdiagonal workspace for NWR.GE.2 as required.
 | |
| *        .    (In fact, there is enough subdiagonal space for
 | |
| *        .    NWR.GE.4.) ====
 | |
| *
 | |
|          NWR = ILAENV( 13, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
 | |
|          NWR = MAX( 2, NWR )
 | |
|          NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )
 | |
| *
 | |
| *        ==== NSR = recommended number of simultaneous shifts.
 | |
| *        .    At this point N .GT. NTINY = 15, so there is at
 | |
| *        .    enough subdiagonal workspace for NSR to be even
 | |
| *        .    and greater than or equal to two as required. ====
 | |
| *
 | |
|          NSR = ILAENV( 15, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
 | |
|          NSR = MIN( NSR, ( N-3 ) / 6, IHI-ILO )
 | |
|          NSR = MAX( 2, NSR-MOD( NSR, 2 ) )
 | |
| *
 | |
| *        ==== Estimate optimal workspace ====
 | |
| *
 | |
| *        ==== Workspace query call to DLAQR2 ====
 | |
| *
 | |
|          CALL DLAQR2( WANTT, WANTZ, N, ILO, IHI, NWR+1, H, LDH, ILOZ,
 | |
|      $                IHIZ, Z, LDZ, LS, LD, WR, WI, H, LDH, N, H, LDH,
 | |
|      $                N, H, LDH, WORK, -1 )
 | |
| *
 | |
| *        ==== Optimal workspace = MAX(DLAQR5, DLAQR2) ====
 | |
| *
 | |
|          LWKOPT = MAX( 3*NSR / 2, INT( WORK( 1 ) ) )
 | |
| *
 | |
| *        ==== Quick return in case of workspace query. ====
 | |
| *
 | |
|          IF( LWORK.EQ.-1 ) THEN
 | |
|             WORK( 1 ) = DBLE( LWKOPT )
 | |
|             RETURN
 | |
|          END IF
 | |
| *
 | |
| *        ==== DLAHQR/DLAQR0 crossover point ====
 | |
| *
 | |
|          NMIN = ILAENV( 12, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
 | |
|          NMIN = MAX( NTINY, NMIN )
 | |
| *
 | |
| *        ==== Nibble crossover point ====
 | |
| *
 | |
|          NIBBLE = ILAENV( 14, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
 | |
|          NIBBLE = MAX( 0, NIBBLE )
 | |
| *
 | |
| *        ==== Accumulate reflections during ttswp?  Use block
 | |
| *        .    2-by-2 structure during matrix-matrix multiply? ====
 | |
| *
 | |
|          KACC22 = ILAENV( 16, 'DLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
 | |
|          KACC22 = MAX( 0, KACC22 )
 | |
|          KACC22 = MIN( 2, KACC22 )
 | |
| *
 | |
| *        ==== NWMAX = the largest possible deflation window for
 | |
| *        .    which there is sufficient workspace. ====
 | |
| *
 | |
|          NWMAX = MIN( ( N-1 ) / 3, LWORK / 2 )
 | |
|          NW = NWMAX
 | |
| *
 | |
| *        ==== NSMAX = the Largest number of simultaneous shifts
 | |
| *        .    for which there is sufficient workspace. ====
 | |
| *
 | |
|          NSMAX = MIN( ( N-3 ) / 6, 2*LWORK / 3 )
 | |
|          NSMAX = NSMAX - MOD( NSMAX, 2 )
 | |
| *
 | |
| *        ==== NDFL: an iteration count restarted at deflation. ====
 | |
| *
 | |
|          NDFL = 1
 | |
| *
 | |
| *        ==== ITMAX = iteration limit ====
 | |
| *
 | |
|          ITMAX = MAX( 30, 2*KEXSH )*MAX( 10, ( IHI-ILO+1 ) )
 | |
| *
 | |
| *        ==== Last row and column in the active block ====
 | |
| *
 | |
|          KBOT = IHI
 | |
| *
 | |
| *        ==== Main Loop ====
 | |
| *
 | |
|          DO 80 IT = 1, ITMAX
 | |
| *
 | |
| *           ==== Done when KBOT falls below ILO ====
 | |
| *
 | |
|             IF( KBOT.LT.ILO )
 | |
|      $         GO TO 90
 | |
| *
 | |
| *           ==== Locate active block ====
 | |
| *
 | |
|             DO 10 K = KBOT, ILO + 1, -1
 | |
|                IF( H( K, K-1 ).EQ.ZERO )
 | |
|      $            GO TO 20
 | |
|    10       CONTINUE
 | |
|             K = ILO
 | |
|    20       CONTINUE
 | |
|             KTOP = K
 | |
| *
 | |
| *           ==== Select deflation window size:
 | |
| *           .    Typical Case:
 | |
| *           .      If possible and advisable, nibble the entire
 | |
| *           .      active block.  If not, use size MIN(NWR,NWMAX)
 | |
| *           .      or MIN(NWR+1,NWMAX) depending upon which has
 | |
| *           .      the smaller corresponding subdiagonal entry
 | |
| *           .      (a heuristic).
 | |
| *           .
 | |
| *           .    Exceptional Case:
 | |
| *           .      If there have been no deflations in KEXNW or
 | |
| *           .      more iterations, then vary the deflation window
 | |
| *           .      size.   At first, because, larger windows are,
 | |
| *           .      in general, more powerful than smaller ones,
 | |
| *           .      rapidly increase the window to the maximum possible.
 | |
| *           .      Then, gradually reduce the window size. ====
 | |
| *
 | |
|             NH = KBOT - KTOP + 1
 | |
|             NWUPBD = MIN( NH, NWMAX )
 | |
|             IF( NDFL.LT.KEXNW ) THEN
 | |
|                NW = MIN( NWUPBD, NWR )
 | |
|             ELSE
 | |
|                NW = MIN( NWUPBD, 2*NW )
 | |
|             END IF
 | |
|             IF( NW.LT.NWMAX ) THEN
 | |
|                IF( NW.GE.NH-1 ) THEN
 | |
|                   NW = NH
 | |
|                ELSE
 | |
|                   KWTOP = KBOT - NW + 1
 | |
|                   IF( ABS( H( KWTOP, KWTOP-1 ) ).GT.
 | |
|      $                ABS( H( KWTOP-1, KWTOP-2 ) ) )NW = NW + 1
 | |
|                END IF
 | |
|             END IF
 | |
|             IF( NDFL.LT.KEXNW ) THEN
 | |
|                NDEC = -1
 | |
|             ELSE IF( NDEC.GE.0 .OR. NW.GE.NWUPBD ) THEN
 | |
|                NDEC = NDEC + 1
 | |
|                IF( NW-NDEC.LT.2 )
 | |
|      $            NDEC = 0
 | |
|                NW = NW - NDEC
 | |
|             END IF
 | |
| *
 | |
| *           ==== Aggressive early deflation:
 | |
| *           .    split workspace under the subdiagonal into
 | |
| *           .      - an nw-by-nw work array V in the lower
 | |
| *           .        left-hand-corner,
 | |
| *           .      - an NW-by-at-least-NW-but-more-is-better
 | |
| *           .        (NW-by-NHO) horizontal work array along
 | |
| *           .        the bottom edge,
 | |
| *           .      - an at-least-NW-but-more-is-better (NHV-by-NW)
 | |
| *           .        vertical work array along the left-hand-edge.
 | |
| *           .        ====
 | |
| *
 | |
|             KV = N - NW + 1
 | |
|             KT = NW + 1
 | |
|             NHO = ( N-NW-1 ) - KT + 1
 | |
|             KWV = NW + 2
 | |
|             NVE = ( N-NW ) - KWV + 1
 | |
| *
 | |
| *           ==== Aggressive early deflation ====
 | |
| *
 | |
|             CALL DLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
 | |
|      $                   IHIZ, Z, LDZ, LS, LD, WR, WI, H( KV, 1 ), LDH,
 | |
|      $                   NHO, H( KV, KT ), LDH, NVE, H( KWV, 1 ), LDH,
 | |
|      $                   WORK, LWORK )
 | |
| *
 | |
| *           ==== Adjust KBOT accounting for new deflations. ====
 | |
| *
 | |
|             KBOT = KBOT - LD
 | |
| *
 | |
| *           ==== KS points to the shifts. ====
 | |
| *
 | |
|             KS = KBOT - LS + 1
 | |
| *
 | |
| *           ==== Skip an expensive QR sweep if there is a (partly
 | |
| *           .    heuristic) reason to expect that many eigenvalues
 | |
| *           .    will deflate without it.  Here, the QR sweep is
 | |
| *           .    skipped if many eigenvalues have just been deflated
 | |
| *           .    or if the remaining active block is small.
 | |
| *
 | |
|             IF( ( LD.EQ.0 ) .OR. ( ( 100*LD.LE.NW*NIBBLE ) .AND. ( KBOT-
 | |
|      $          KTOP+1.GT.MIN( NMIN, NWMAX ) ) ) ) THEN
 | |
| *
 | |
| *              ==== NS = nominal number of simultaneous shifts.
 | |
| *              .    This may be lowered (slightly) if DLAQR2
 | |
| *              .    did not provide that many shifts. ====
 | |
| *
 | |
|                NS = MIN( NSMAX, NSR, MAX( 2, KBOT-KTOP ) )
 | |
|                NS = NS - MOD( NS, 2 )
 | |
| *
 | |
| *              ==== If there have been no deflations
 | |
| *              .    in a multiple of KEXSH iterations,
 | |
| *              .    then try exceptional shifts.
 | |
| *              .    Otherwise use shifts provided by
 | |
| *              .    DLAQR2 above or from the eigenvalues
 | |
| *              .    of a trailing principal submatrix. ====
 | |
| *
 | |
|                IF( MOD( NDFL, KEXSH ).EQ.0 ) THEN
 | |
|                   KS = KBOT - NS + 1
 | |
|                   DO 30 I = KBOT, MAX( KS+1, KTOP+2 ), -2
 | |
|                      SS = ABS( H( I, I-1 ) ) + ABS( H( I-1, I-2 ) )
 | |
|                      AA = WILK1*SS + H( I, I )
 | |
|                      BB = SS
 | |
|                      CC = WILK2*SS
 | |
|                      DD = AA
 | |
|                      CALL DLANV2( AA, BB, CC, DD, WR( I-1 ), WI( I-1 ),
 | |
|      $                            WR( I ), WI( I ), CS, SN )
 | |
|    30             CONTINUE
 | |
|                   IF( KS.EQ.KTOP ) THEN
 | |
|                      WR( KS+1 ) = H( KS+1, KS+1 )
 | |
|                      WI( KS+1 ) = ZERO
 | |
|                      WR( KS ) = WR( KS+1 )
 | |
|                      WI( KS ) = WI( KS+1 )
 | |
|                   END IF
 | |
|                ELSE
 | |
| *
 | |
| *                 ==== Got NS/2 or fewer shifts? Use DLAHQR
 | |
| *                 .    on a trailing principal submatrix to
 | |
| *                 .    get more. (Since NS.LE.NSMAX.LE.(N-3)/6,
 | |
| *                 .    there is enough space below the subdiagonal
 | |
| *                 .    to fit an NS-by-NS scratch array.) ====
 | |
| *
 | |
|                   IF( KBOT-KS+1.LE.NS / 2 ) THEN
 | |
|                      KS = KBOT - NS + 1
 | |
|                      KT = N - NS + 1
 | |
|                      CALL DLACPY( 'A', NS, NS, H( KS, KS ), LDH,
 | |
|      $                            H( KT, 1 ), LDH )
 | |
|                      CALL DLAHQR( .false., .false., NS, 1, NS,
 | |
|      $                            H( KT, 1 ), LDH, WR( KS ), WI( KS ),
 | |
|      $                            1, 1, ZDUM, 1, INF )
 | |
|                      KS = KS + INF
 | |
| *
 | |
| *                    ==== In case of a rare QR failure use
 | |
| *                    .    eigenvalues of the trailing 2-by-2
 | |
| *                    .    principal submatrix.  ====
 | |
| *
 | |
|                      IF( KS.GE.KBOT ) THEN
 | |
|                         AA = H( KBOT-1, KBOT-1 )
 | |
|                         CC = H( KBOT, KBOT-1 )
 | |
|                         BB = H( KBOT-1, KBOT )
 | |
|                         DD = H( KBOT, KBOT )
 | |
|                         CALL DLANV2( AA, BB, CC, DD, WR( KBOT-1 ),
 | |
|      $                               WI( KBOT-1 ), WR( KBOT ),
 | |
|      $                               WI( KBOT ), CS, SN )
 | |
|                         KS = KBOT - 1
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
|                   IF( KBOT-KS+1.GT.NS ) THEN
 | |
| *
 | |
| *                    ==== Sort the shifts (Helps a little)
 | |
| *                    .    Bubble sort keeps complex conjugate
 | |
| *                    .    pairs together. ====
 | |
| *
 | |
|                      SORTED = .false.
 | |
|                      DO 50 K = KBOT, KS + 1, -1
 | |
|                         IF( SORTED )
 | |
|      $                     GO TO 60
 | |
|                         SORTED = .true.
 | |
|                         DO 40 I = KS, K - 1
 | |
|                            IF( ABS( WR( I ) )+ABS( WI( I ) ).LT.
 | |
|      $                         ABS( WR( I+1 ) )+ABS( WI( I+1 ) ) ) THEN
 | |
|                               SORTED = .false.
 | |
| *
 | |
|                               SWAP = WR( I )
 | |
|                               WR( I ) = WR( I+1 )
 | |
|                               WR( I+1 ) = SWAP
 | |
| *
 | |
|                               SWAP = WI( I )
 | |
|                               WI( I ) = WI( I+1 )
 | |
|                               WI( I+1 ) = SWAP
 | |
|                            END IF
 | |
|    40                   CONTINUE
 | |
|    50                CONTINUE
 | |
|    60                CONTINUE
 | |
|                   END IF
 | |
| *
 | |
| *                 ==== Shuffle shifts into pairs of real shifts
 | |
| *                 .    and pairs of complex conjugate shifts
 | |
| *                 .    assuming complex conjugate shifts are
 | |
| *                 .    already adjacent to one another. (Yes,
 | |
| *                 .    they are.)  ====
 | |
| *
 | |
|                   DO 70 I = KBOT, KS + 2, -2
 | |
|                      IF( WI( I ).NE.-WI( I-1 ) ) THEN
 | |
| *
 | |
|                         SWAP = WR( I )
 | |
|                         WR( I ) = WR( I-1 )
 | |
|                         WR( I-1 ) = WR( I-2 )
 | |
|                         WR( I-2 ) = SWAP
 | |
| *
 | |
|                         SWAP = WI( I )
 | |
|                         WI( I ) = WI( I-1 )
 | |
|                         WI( I-1 ) = WI( I-2 )
 | |
|                         WI( I-2 ) = SWAP
 | |
|                      END IF
 | |
|    70             CONTINUE
 | |
|                END IF
 | |
| *
 | |
| *              ==== If there are only two shifts and both are
 | |
| *              .    real, then use only one.  ====
 | |
| *
 | |
|                IF( KBOT-KS+1.EQ.2 ) THEN
 | |
|                   IF( WI( KBOT ).EQ.ZERO ) THEN
 | |
|                      IF( ABS( WR( KBOT )-H( KBOT, KBOT ) ).LT.
 | |
|      $                   ABS( WR( KBOT-1 )-H( KBOT, KBOT ) ) ) THEN
 | |
|                         WR( KBOT-1 ) = WR( KBOT )
 | |
|                      ELSE
 | |
|                         WR( KBOT ) = WR( KBOT-1 )
 | |
|                      END IF
 | |
|                   END IF
 | |
|                END IF
 | |
| *
 | |
| *              ==== Use up to NS of the the smallest magnitude
 | |
| *              .    shifts.  If there aren't NS shifts available,
 | |
| *              .    then use them all, possibly dropping one to
 | |
| *              .    make the number of shifts even. ====
 | |
| *
 | |
|                NS = MIN( NS, KBOT-KS+1 )
 | |
|                NS = NS - MOD( NS, 2 )
 | |
|                KS = KBOT - NS + 1
 | |
| *
 | |
| *              ==== Small-bulge multi-shift QR sweep:
 | |
| *              .    split workspace under the subdiagonal into
 | |
| *              .    - a KDU-by-KDU work array U in the lower
 | |
| *              .      left-hand-corner,
 | |
| *              .    - a KDU-by-at-least-KDU-but-more-is-better
 | |
| *              .      (KDU-by-NHo) horizontal work array WH along
 | |
| *              .      the bottom edge,
 | |
| *              .    - and an at-least-KDU-but-more-is-better-by-KDU
 | |
| *              .      (NVE-by-KDU) vertical work WV arrow along
 | |
| *              .      the left-hand-edge. ====
 | |
| *
 | |
|                KDU = 2*NS
 | |
|                KU = N - KDU + 1
 | |
|                KWH = KDU + 1
 | |
|                NHO = ( N-KDU+1-4 ) - ( KDU+1 ) + 1
 | |
|                KWV = KDU + 4
 | |
|                NVE = N - KDU - KWV + 1
 | |
| *
 | |
| *              ==== Small-bulge multi-shift QR sweep ====
 | |
| *
 | |
|                CALL DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NS,
 | |
|      $                      WR( KS ), WI( KS ), H, LDH, ILOZ, IHIZ, Z,
 | |
|      $                      LDZ, WORK, 3, H( KU, 1 ), LDH, NVE,
 | |
|      $                      H( KWV, 1 ), LDH, NHO, H( KU, KWH ), LDH )
 | |
|             END IF
 | |
| *
 | |
| *           ==== Note progress (or the lack of it). ====
 | |
| *
 | |
|             IF( LD.GT.0 ) THEN
 | |
|                NDFL = 1
 | |
|             ELSE
 | |
|                NDFL = NDFL + 1
 | |
|             END IF
 | |
| *
 | |
| *           ==== End of main loop ====
 | |
|    80    CONTINUE
 | |
| *
 | |
| *        ==== Iteration limit exceeded.  Set INFO to show where
 | |
| *        .    the problem occurred and exit. ====
 | |
| *
 | |
|          INFO = KBOT
 | |
|    90    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     ==== Return the optimal value of LWORK. ====
 | |
| *
 | |
|       WORK( 1 ) = DBLE( LWKOPT )
 | |
| *
 | |
| *     ==== End of DLAQR4 ====
 | |
| *
 | |
|       END
 |