356 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			356 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DGGGLM
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DGGGLM + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dggglm.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dggglm.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dggglm.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DGGGLM( N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK,
 | |
| *                          INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), D( * ), WORK( * ),
 | |
| *      $                   X( * ), Y( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DGGGLM solves a general Gauss-Markov linear model (GLM) problem:
 | |
| *>
 | |
| *>         minimize || y ||_2   subject to   d = A*x + B*y
 | |
| *>             x
 | |
| *>
 | |
| *> where A is an N-by-M matrix, B is an N-by-P matrix, and d is a
 | |
| *> given N-vector. It is assumed that M <= N <= M+P, and
 | |
| *>
 | |
| *>            rank(A) = M    and    rank( A B ) = N.
 | |
| *>
 | |
| *> Under these assumptions, the constrained equation is always
 | |
| *> consistent, and there is a unique solution x and a minimal 2-norm
 | |
| *> solution y, which is obtained using a generalized QR factorization
 | |
| *> of the matrices (A, B) given by
 | |
| *>
 | |
| *>    A = Q*(R),   B = Q*T*Z.
 | |
| *>          (0)
 | |
| *>
 | |
| *> In particular, if matrix B is square nonsingular, then the problem
 | |
| *> GLM is equivalent to the following weighted linear least squares
 | |
| *> problem
 | |
| *>
 | |
| *>              minimize || inv(B)*(d-A*x) ||_2
 | |
| *>                  x
 | |
| *>
 | |
| *> where inv(B) denotes the inverse of B.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of rows of the matrices A and B.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of columns of the matrix A.  0 <= M <= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] P
 | |
| *> \verbatim
 | |
| *>          P is INTEGER
 | |
| *>          The number of columns of the matrix B.  P >= N-M.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,M)
 | |
| *>          On entry, the N-by-M matrix A.
 | |
| *>          On exit, the upper triangular part of the array A contains
 | |
| *>          the M-by-M upper triangular matrix R.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A. LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION array, dimension (LDB,P)
 | |
| *>          On entry, the N-by-P matrix B.
 | |
| *>          On exit, if N <= P, the upper triangle of the subarray
 | |
| *>          B(1:N,P-N+1:P) contains the N-by-N upper triangular matrix T;
 | |
| *>          if N > P, the elements on and above the (N-P)th subdiagonal
 | |
| *>          contain the N-by-P upper trapezoidal matrix T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B. LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension (N)
 | |
| *>          On entry, D is the left hand side of the GLM equation.
 | |
| *>          On exit, D is destroyed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] X
 | |
| *> \verbatim
 | |
| *>          X is DOUBLE PRECISION array, dimension (M)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Y
 | |
| *> \verbatim
 | |
| *>          Y is DOUBLE PRECISION array, dimension (P)
 | |
| *>
 | |
| *>          On exit, X and Y are the solutions of the GLM problem.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK. LWORK >= max(1,N+M+P).
 | |
| *>          For optimum performance, LWORK >= M+min(N,P)+max(N,P)*NB,
 | |
| *>          where NB is an upper bound for the optimal blocksizes for
 | |
| *>          DGEQRF, SGERQF, DORMQR and SORMRQ.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit.
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>          = 1:  the upper triangular factor R associated with A in the
 | |
| *>                generalized QR factorization of the pair (A, B) is
 | |
| *>                singular, so that rank(A) < M; the least squares
 | |
| *>                solution could not be computed.
 | |
| *>          = 2:  the bottom (N-M) by (N-M) part of the upper trapezoidal
 | |
| *>                factor T associated with B in the generalized QR
 | |
| *>                factorization of the pair (A, B) is singular, so that
 | |
| *>                rank( A B ) < N; the least squares solution could not
 | |
| *>                be computed.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup doubleOTHEReigen
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DGGGLM( N, M, P, A, LDA, B, LDB, D, X, Y, WORK, LWORK,
 | |
|      $                   INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, LDB, LWORK, M, N, P
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), D( * ), WORK( * ),
 | |
|      $                   X( * ), Y( * )
 | |
| *     ..
 | |
| *
 | |
| *  ===================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY
 | |
|       INTEGER            I, LOPT, LWKMIN, LWKOPT, NB, NB1, NB2, NB3,
 | |
|      $                   NB4, NP
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DCOPY, DGEMV, DGGQRF, DORMQR, DORMRQ, DTRTRS,
 | |
|      $                   XERBLA
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            ILAENV
 | |
|       EXTERNAL           ILAENV
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          INT, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters
 | |
| *
 | |
|       INFO = 0
 | |
|       NP = MIN( N, P )
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
|       IF( N.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( M.LT.0 .OR. M.GT.N ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( P.LT.0 .OR. P.LT.N-M ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -7
 | |
|       END IF
 | |
| *
 | |
| *     Calculate workspace
 | |
| *
 | |
|       IF( INFO.EQ.0) THEN
 | |
|          IF( N.EQ.0 ) THEN
 | |
|             LWKMIN = 1
 | |
|             LWKOPT = 1
 | |
|          ELSE
 | |
|             NB1 = ILAENV( 1, 'DGEQRF', ' ', N, M, -1, -1 )
 | |
|             NB2 = ILAENV( 1, 'DGERQF', ' ', N, M, -1, -1 )
 | |
|             NB3 = ILAENV( 1, 'DORMQR', ' ', N, M, P, -1 )
 | |
|             NB4 = ILAENV( 1, 'DORMRQ', ' ', N, M, P, -1 )
 | |
|             NB = MAX( NB1, NB2, NB3, NB4 )
 | |
|             LWKMIN = M + N + P
 | |
|             LWKOPT = M + NP + MAX( N, P )*NB
 | |
|          END IF
 | |
|          WORK( 1 ) = LWKOPT
 | |
| *
 | |
|          IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -12
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DGGGLM', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 ) THEN
 | |
|          DO I = 1, M
 | |
|             X(I) = ZERO
 | |
|          END DO
 | |
|          DO I = 1, P
 | |
|             Y(I) = ZERO
 | |
|          END DO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Compute the GQR factorization of matrices A and B:
 | |
| *
 | |
| *          Q**T*A = ( R11 ) M,    Q**T*B*Z**T = ( T11   T12 ) M
 | |
| *                   (  0  ) N-M                 (  0    T22 ) N-M
 | |
| *                      M                         M+P-N  N-M
 | |
| *
 | |
| *     where R11 and T22 are upper triangular, and Q and Z are
 | |
| *     orthogonal.
 | |
| *
 | |
|       CALL DGGQRF( N, M, P, A, LDA, WORK, B, LDB, WORK( M+1 ),
 | |
|      $             WORK( M+NP+1 ), LWORK-M-NP, INFO )
 | |
|       LOPT = WORK( M+NP+1 )
 | |
| *
 | |
| *     Update left-hand-side vector d = Q**T*d = ( d1 ) M
 | |
| *                                               ( d2 ) N-M
 | |
| *
 | |
|       CALL DORMQR( 'Left', 'Transpose', N, 1, M, A, LDA, WORK, D,
 | |
|      $             MAX( 1, N ), WORK( M+NP+1 ), LWORK-M-NP, INFO )
 | |
|       LOPT = MAX( LOPT, INT( WORK( M+NP+1 ) ) )
 | |
| *
 | |
| *     Solve T22*y2 = d2 for y2
 | |
| *
 | |
|       IF( N.GT.M ) THEN
 | |
|          CALL DTRTRS( 'Upper', 'No transpose', 'Non unit', N-M, 1,
 | |
|      $                B( M+1, M+P-N+1 ), LDB, D( M+1 ), N-M, INFO )
 | |
| *
 | |
|          IF( INFO.GT.0 ) THEN
 | |
|             INFO = 1
 | |
|             RETURN
 | |
|          END IF
 | |
| *
 | |
|          CALL DCOPY( N-M, D( M+1 ), 1, Y( M+P-N+1 ), 1 )
 | |
|       END IF
 | |
| *
 | |
| *     Set y1 = 0
 | |
| *
 | |
|       DO 10 I = 1, M + P - N
 | |
|          Y( I ) = ZERO
 | |
|    10 CONTINUE
 | |
| *
 | |
| *     Update d1 = d1 - T12*y2
 | |
| *
 | |
|       CALL DGEMV( 'No transpose', M, N-M, -ONE, B( 1, M+P-N+1 ), LDB,
 | |
|      $            Y( M+P-N+1 ), 1, ONE, D, 1 )
 | |
| *
 | |
| *     Solve triangular system: R11*x = d1
 | |
| *
 | |
|       IF( M.GT.0 ) THEN
 | |
|          CALL DTRTRS( 'Upper', 'No Transpose', 'Non unit', M, 1, A, LDA,
 | |
|      $                D, M, INFO )
 | |
| *
 | |
|          IF( INFO.GT.0 ) THEN
 | |
|             INFO = 2
 | |
|             RETURN
 | |
|          END IF
 | |
| *
 | |
| *        Copy D to X
 | |
| *
 | |
|          CALL DCOPY( M, D, 1, X, 1 )
 | |
|       END IF
 | |
| *
 | |
| *     Backward transformation y = Z**T *y
 | |
| *
 | |
|       CALL DORMRQ( 'Left', 'Transpose', P, 1, NP,
 | |
|      $             B( MAX( 1, N-P+1 ), 1 ), LDB, WORK( M+1 ), Y,
 | |
|      $             MAX( 1, P ), WORK( M+NP+1 ), LWORK-M-NP, INFO )
 | |
|       WORK( 1 ) = M + NP + MAX( LOPT, INT( WORK( M+NP+1 ) ) )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DGGGLM
 | |
| *
 | |
|       END
 |