330 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			330 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DGELQ
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DGELQ( M, N, A, LDA, T, TSIZE, WORK, LWORK,
 | |
| *                         INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER           INFO, LDA, M, N, TSIZE, LWORK
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION  A( LDA, * ), T( * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DGELQ computes an LQ factorization of a real M-by-N matrix A:
 | |
| *>
 | |
| *>    A = ( L 0 ) *  Q
 | |
| *>
 | |
| *> where:
 | |
| *>
 | |
| *>    Q is a N-by-N orthogonal matrix;
 | |
| *>    L is a lower-triangular M-by-M matrix;
 | |
| *>    0 is a M-by-(N-M) zero matrix, if M < N.
 | |
| *>
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | |
| *>          On entry, the M-by-N matrix A.
 | |
| *>          On exit, the elements on and below the diagonal of the array
 | |
| *>          contain the M-by-min(M,N) lower trapezoidal matrix L
 | |
| *>          (L is lower triangular if M <= N);
 | |
| *>          the elements above the diagonal are used to store part of the 
 | |
| *>          data structure to represent Q.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] T
 | |
| *> \verbatim
 | |
| *>          T is DOUBLE PRECISION array, dimension (MAX(5,TSIZE))
 | |
| *>          On exit, if INFO = 0, T(1) returns optimal (or either minimal 
 | |
| *>          or optimal, if query is assumed) TSIZE. See TSIZE for details.
 | |
| *>          Remaining T contains part of the data structure used to represent Q.
 | |
| *>          If one wants to apply or construct Q, then one needs to keep T 
 | |
| *>          (in addition to A) and pass it to further subroutines.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TSIZE
 | |
| *> \verbatim
 | |
| *>          TSIZE is INTEGER
 | |
| *>          If TSIZE >= 5, the dimension of the array T.
 | |
| *>          If TSIZE = -1 or -2, then a workspace query is assumed. The routine
 | |
| *>          only calculates the sizes of the T and WORK arrays, returns these
 | |
| *>          values as the first entries of the T and WORK arrays, and no error
 | |
| *>          message related to T or WORK is issued by XERBLA.
 | |
| *>          If TSIZE = -1, the routine calculates optimal size of T for the 
 | |
| *>          optimum performance and returns this value in T(1).
 | |
| *>          If TSIZE = -2, the routine calculates minimal size of T and 
 | |
| *>          returns this value in T(1).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) contains optimal (or either minimal
 | |
| *>          or optimal, if query was assumed) LWORK.
 | |
| *>          See LWORK for details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.
 | |
| *>          If LWORK = -1 or -2, then a workspace query is assumed. The routine
 | |
| *>          only calculates the sizes of the T and WORK arrays, returns these
 | |
| *>          values as the first entries of the T and WORK arrays, and no error
 | |
| *>          message related to T or WORK is issued by XERBLA.
 | |
| *>          If LWORK = -1, the routine calculates optimal size of WORK for the
 | |
| *>          optimal performance and returns this value in WORK(1).
 | |
| *>          If LWORK = -2, the routine calculates minimal size of WORK and 
 | |
| *>          returns this value in WORK(1).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \par Further Details
 | |
| *  ====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> The goal of the interface is to give maximum freedom to the developers for
 | |
| *> creating any LQ factorization algorithm they wish. The triangular 
 | |
| *> (trapezoidal) L has to be stored in the lower part of A. The lower part of A
 | |
| *> and the array T can be used to store any relevant information for applying or
 | |
| *> constructing the Q factor. The WORK array can safely be discarded after exit.
 | |
| *>
 | |
| *> Caution: One should not expect the sizes of T and WORK to be the same from one 
 | |
| *> LAPACK implementation to the other, or even from one execution to the other.
 | |
| *> A workspace query (for T and WORK) is needed at each execution. However, 
 | |
| *> for a given execution, the size of T and WORK are fixed and will not change 
 | |
| *> from one query to the next.
 | |
| *>
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \par Further Details particular to this LAPACK implementation:
 | |
| *  ==============================================================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> These details are particular for this LAPACK implementation. Users should not 
 | |
| *> take them for granted. These details may change in the future, and are not likely
 | |
| *> true for another LAPACK implementation. These details are relevant if one wants
 | |
| *> to try to understand the code. They are not part of the interface.
 | |
| *>
 | |
| *> In this version,
 | |
| *>
 | |
| *>          T(2): row block size (MB)
 | |
| *>          T(3): column block size (NB)
 | |
| *>          T(6:TSIZE): data structure needed for Q, computed by
 | |
| *>                           DLASWLQ or DGELQT
 | |
| *>
 | |
| *>  Depending on the matrix dimensions M and N, and row and column
 | |
| *>  block sizes MB and NB returned by ILAENV, DGELQ will use either
 | |
| *>  DLASWLQ (if the matrix is short-and-wide) or DGELQT to compute
 | |
| *>  the LQ factorization.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DGELQ( M, N, A, LDA, T, TSIZE, WORK, LWORK,
 | |
|      $                  INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.9.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
 | |
| *     November 2019
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LDA, M, N, TSIZE, LWORK
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   A( LDA, * ), T( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY, LMINWS, MINT, MINW
 | |
|       INTEGER            MB, NB, MINTSZ, NBLCKS, LWMIN, LWOPT, LWREQ
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DGELQT, DLASWLQ, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN, MOD
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            ILAENV
 | |
|       EXTERNAL           ILAENV
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
|       LQUERY = ( TSIZE.EQ.-1 .OR. TSIZE.EQ.-2 .OR.
 | |
|      $           LWORK.EQ.-1 .OR. LWORK.EQ.-2 )
 | |
| *
 | |
|       MINT = .FALSE.
 | |
|       MINW = .FALSE.
 | |
|       IF( TSIZE.EQ.-2 .OR. LWORK.EQ.-2 ) THEN
 | |
|         IF( TSIZE.NE.-1 ) MINT = .TRUE.
 | |
|         IF( LWORK.NE.-1 ) MINW = .TRUE.
 | |
|       END IF
 | |
| *
 | |
| *     Determine the block size
 | |
| *
 | |
|       IF( MIN( M, N ).GT.0 ) THEN
 | |
|         MB = ILAENV( 1, 'DGELQ ', ' ', M, N, 1, -1 )
 | |
|         NB = ILAENV( 1, 'DGELQ ', ' ', M, N, 2, -1 )
 | |
|       ELSE
 | |
|         MB = 1
 | |
|         NB = N
 | |
|       END IF
 | |
|       IF( MB.GT.MIN( M, N ) .OR. MB.LT.1 ) MB = 1
 | |
|       IF( NB.GT.N .OR. NB.LE.M ) NB = N
 | |
|       MINTSZ = M + 5
 | |
|       IF ( NB.GT.M .AND. N.GT.M ) THEN
 | |
|         IF( MOD( N - M, NB - M ).EQ.0 ) THEN
 | |
|           NBLCKS = ( N - M ) / ( NB - M )
 | |
|         ELSE
 | |
|           NBLCKS = ( N - M ) / ( NB - M ) + 1
 | |
|         END IF
 | |
|       ELSE
 | |
|         NBLCKS = 1
 | |
|       END IF
 | |
| *
 | |
| *     Determine if the workspace size satisfies minimal size
 | |
| *
 | |
|       IF( ( N.LE.M ) .OR. ( NB.LE.M ) .OR. ( NB.GE.N ) ) THEN
 | |
|          LWMIN = MAX( 1, N )
 | |
|          LWOPT = MAX( 1, MB*N )
 | |
|       ELSE
 | |
|          LWMIN = MAX( 1, M )
 | |
|          LWOPT = MAX( 1, MB*M )
 | |
|       END IF
 | |
|       LMINWS = .FALSE.
 | |
|       IF( ( TSIZE.LT.MAX( 1, MB*M*NBLCKS + 5 ) .OR. LWORK.LT.LWOPT )
 | |
|      $    .AND. ( LWORK.GE.LWMIN ) .AND. ( TSIZE.GE.MINTSZ )
 | |
|      $    .AND. ( .NOT.LQUERY ) ) THEN
 | |
|         IF( TSIZE.LT.MAX( 1, MB*M*NBLCKS + 5 ) ) THEN
 | |
|             LMINWS = .TRUE.
 | |
|             MB = 1
 | |
|             NB = N
 | |
|         END IF
 | |
|         IF( LWORK.LT.LWOPT ) THEN
 | |
|             LMINWS = .TRUE.
 | |
|             MB = 1
 | |
|         END IF
 | |
|       END IF
 | |
|       IF( ( N.LE.M ) .OR. ( NB.LE.M ) .OR. ( NB.GE.N ) ) THEN
 | |
|          LWREQ = MAX( 1, MB*N )
 | |
|       ELSE
 | |
|          LWREQ = MAX( 1, MB*M )
 | |
|       END IF
 | |
| *
 | |
|       IF( M.LT.0 ) THEN
 | |
|         INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|         INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|         INFO = -4
 | |
|       ELSE IF( TSIZE.LT.MAX( 1, MB*M*NBLCKS + 5 )
 | |
|      $   .AND. ( .NOT.LQUERY ) .AND. ( .NOT.LMINWS ) ) THEN
 | |
|         INFO = -6
 | |
|       ELSE IF( ( LWORK.LT.LWREQ ) .AND .( .NOT.LQUERY )
 | |
|      $   .AND. ( .NOT.LMINWS ) ) THEN
 | |
|         INFO = -8
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|         IF( MINT ) THEN
 | |
|           T( 1 ) = MINTSZ
 | |
|         ELSE
 | |
|           T( 1 ) = MB*M*NBLCKS + 5
 | |
|         END IF
 | |
|         T( 2 ) = MB
 | |
|         T( 3 ) = NB
 | |
|         IF( MINW ) THEN
 | |
|           WORK( 1 ) = LWMIN
 | |
|         ELSE
 | |
|           WORK( 1 ) = LWREQ
 | |
|         END IF
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|         CALL XERBLA( 'DGELQ', -INFO )
 | |
|         RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|         RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( MIN( M, N ).EQ.0 ) THEN
 | |
|         RETURN
 | |
|       END IF
 | |
| *
 | |
| *     The LQ Decomposition
 | |
| *
 | |
|       IF( ( N.LE.M ) .OR. ( NB.LE.M ) .OR. ( NB.GE.N ) ) THEN
 | |
|         CALL DGELQT( M, N, MB, A, LDA, T( 6 ), MB, WORK, INFO )
 | |
|       ELSE
 | |
|         CALL DLASWLQ( M, N, MB, NB, A, LDA, T( 6 ), MB, WORK,
 | |
|      $                LWORK, INFO )
 | |
|       END IF
 | |
| *
 | |
|       WORK( 1 ) = LWREQ
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of DGELQ
 | |
| *
 | |
|       END
 |