369 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			369 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CTPMQRT
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CTPMQRT + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctpmqrt.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctpmqrt.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctpmqrt.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CTPMQRT( SIDE, TRANS, M, N, K, L, NB, V, LDV, T, LDT,
 | |
| *                           A, LDA, B, LDB, WORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER SIDE, TRANS
 | |
| *       INTEGER   INFO, K, LDV, LDA, LDB, M, N, L, NB, LDT
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX   V( LDV, * ), A( LDA, * ), B( LDB, * ), T( LDT, * ),
 | |
| *      $          WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CTPMQRT applies a complex orthogonal matrix Q obtained from a
 | |
| *> "triangular-pentagonal" complex block reflector H to a general
 | |
| *> complex matrix C, which consists of two blocks A and B.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] SIDE
 | |
| *> \verbatim
 | |
| *>          SIDE is CHARACTER*1
 | |
| *>          = 'L': apply Q or Q**H from the Left;
 | |
| *>          = 'R': apply Q or Q**H from the Right.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>          = 'N':  No transpose, apply Q;
 | |
| *>          = 'C':  Transpose, apply Q**H.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix B. M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix B. N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *>          The number of elementary reflectors whose product defines
 | |
| *>          the matrix Q.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] L
 | |
| *> \verbatim
 | |
| *>          L is INTEGER
 | |
| *>          The order of the trapezoidal part of V.
 | |
| *>          K >= L >= 0.  See Further Details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NB
 | |
| *> \verbatim
 | |
| *>          NB is INTEGER
 | |
| *>          The block size used for the storage of T.  K >= NB >= 1.
 | |
| *>          This must be the same value of NB used to generate T
 | |
| *>          in CTPQRT.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] V
 | |
| *> \verbatim
 | |
| *>          V is COMPLEX array, dimension (LDV,K)
 | |
| *>          The i-th column must contain the vector which defines the
 | |
| *>          elementary reflector H(i), for i = 1,2,...,k, as returned by
 | |
| *>          CTPQRT in B.  See Further Details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDV
 | |
| *> \verbatim
 | |
| *>          LDV is INTEGER
 | |
| *>          The leading dimension of the array V.
 | |
| *>          If SIDE = 'L', LDV >= max(1,M);
 | |
| *>          if SIDE = 'R', LDV >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] T
 | |
| *> \verbatim
 | |
| *>          T is COMPLEX array, dimension (LDT,K)
 | |
| *>          The upper triangular factors of the block reflectors
 | |
| *>          as returned by CTPQRT, stored as a NB-by-K matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDT
 | |
| *> \verbatim
 | |
| *>          LDT is INTEGER
 | |
| *>          The leading dimension of the array T.  LDT >= NB.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension
 | |
| *>          (LDA,N) if SIDE = 'L' or
 | |
| *>          (LDA,K) if SIDE = 'R'
 | |
| *>          On entry, the K-by-N or M-by-K matrix A.
 | |
| *>          On exit, A is overwritten by the corresponding block of
 | |
| *>          Q*C or Q**H*C or C*Q or C*Q**H.  See Further Details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.
 | |
| *>          If SIDE = 'L', LDC >= max(1,K);
 | |
| *>          If SIDE = 'R', LDC >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX array, dimension (LDB,N)
 | |
| *>          On entry, the M-by-N matrix B.
 | |
| *>          On exit, B is overwritten by the corresponding block of
 | |
| *>          Q*C or Q**H*C or C*Q or C*Q**H.  See Further Details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.
 | |
| *>          LDB >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array. The dimension of WORK is
 | |
| *>           N*NB if SIDE = 'L', or  M*NB if SIDE = 'R'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date November 2017
 | |
| *
 | |
| *> \ingroup complexOTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The columns of the pentagonal matrix V contain the elementary reflectors
 | |
| *>  H(1), H(2), ..., H(K); V is composed of a rectangular block V1 and a
 | |
| *>  trapezoidal block V2:
 | |
| *>
 | |
| *>        V = [V1]
 | |
| *>            [V2].
 | |
| *>
 | |
| *>  The size of the trapezoidal block V2 is determined by the parameter L,
 | |
| *>  where 0 <= L <= K; V2 is upper trapezoidal, consisting of the first L
 | |
| *>  rows of a K-by-K upper triangular matrix.  If L=K, V2 is upper triangular;
 | |
| *>  if L=0, there is no trapezoidal block, hence V = V1 is rectangular.
 | |
| *>
 | |
| *>  If SIDE = 'L':  C = [A]  where A is K-by-N,  B is M-by-N and V is M-by-K.
 | |
| *>                      [B]
 | |
| *>
 | |
| *>  If SIDE = 'R':  C = [A B]  where A is M-by-K, B is M-by-N and V is N-by-K.
 | |
| *>
 | |
| *>  The complex orthogonal matrix Q is formed from V and T.
 | |
| *>
 | |
| *>  If TRANS='N' and SIDE='L', C is on exit replaced with Q * C.
 | |
| *>
 | |
| *>  If TRANS='C' and SIDE='L', C is on exit replaced with Q**H * C.
 | |
| *>
 | |
| *>  If TRANS='N' and SIDE='R', C is on exit replaced with C * Q.
 | |
| *>
 | |
| *>  If TRANS='C' and SIDE='R', C is on exit replaced with C * Q**H.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CTPMQRT( SIDE, TRANS, M, N, K, L, NB, V, LDV, T, LDT,
 | |
|      $                    A, LDA, B, LDB, WORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.8.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2017
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER SIDE, TRANS
 | |
|       INTEGER   INFO, K, LDV, LDA, LDB, M, N, L, NB, LDT
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX   V( LDV, * ), A( LDA, * ), B( LDB, * ), T( LDT, * ),
 | |
|      $          WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LEFT, RIGHT, TRAN, NOTRAN
 | |
|       INTEGER            I, IB, MB, LB, KF, LDAQ, LDVQ
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CTPRFB, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     .. Test the input arguments ..
 | |
| *
 | |
|       INFO   = 0
 | |
|       LEFT   = LSAME( SIDE,  'L' )
 | |
|       RIGHT  = LSAME( SIDE,  'R' )
 | |
|       TRAN   = LSAME( TRANS, 'C' )
 | |
|       NOTRAN = LSAME( TRANS, 'N' )
 | |
| *
 | |
|       IF ( LEFT ) THEN
 | |
|          LDVQ = MAX( 1, M )
 | |
|          LDAQ = MAX( 1, K )
 | |
|       ELSE IF ( RIGHT ) THEN
 | |
|          LDVQ = MAX( 1, N )
 | |
|          LDAQ = MAX( 1, M )
 | |
|       END IF
 | |
|       IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( M.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( K.LT.0 ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( L.LT.0 .OR. L.GT.K ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( NB.LT.1 .OR. (NB.GT.K .AND. K.GT.0) ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( LDV.LT.LDVQ ) THEN
 | |
|          INFO = -9
 | |
|       ELSE IF( LDT.LT.NB ) THEN
 | |
|          INFO = -11
 | |
|       ELSE IF( LDA.LT.LDAQ ) THEN
 | |
|          INFO = -13
 | |
|       ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -15
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CTPMQRT', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     .. Quick return if possible ..
 | |
| *
 | |
|       IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) RETURN
 | |
| *
 | |
|       IF( LEFT .AND. TRAN ) THEN
 | |
| *
 | |
|          DO I = 1, K, NB
 | |
|             IB = MIN( NB, K-I+1 )
 | |
|             MB = MIN( M-L+I+IB-1, M )
 | |
|             IF( I.GE.L ) THEN
 | |
|                LB = 0
 | |
|             ELSE
 | |
|                LB = MB-M+L-I+1
 | |
|             END IF
 | |
|             CALL CTPRFB( 'L', 'C', 'F', 'C', MB, N, IB, LB,
 | |
|      $                   V( 1, I ), LDV, T( 1, I ), LDT,
 | |
|      $                   A( I, 1 ), LDA, B, LDB, WORK, IB )
 | |
|          END DO
 | |
| *
 | |
|       ELSE IF( RIGHT .AND. NOTRAN ) THEN
 | |
| *
 | |
|          DO I = 1, K, NB
 | |
|             IB = MIN( NB, K-I+1 )
 | |
|             MB = MIN( N-L+I+IB-1, N )
 | |
|             IF( I.GE.L ) THEN
 | |
|                LB = 0
 | |
|             ELSE
 | |
|                LB = MB-N+L-I+1
 | |
|             END IF
 | |
|             CALL CTPRFB( 'R', 'N', 'F', 'C', M, MB, IB, LB,
 | |
|      $                   V( 1, I ), LDV, T( 1, I ), LDT,
 | |
|      $                   A( 1, I ), LDA, B, LDB, WORK, M )
 | |
|          END DO
 | |
| *
 | |
|       ELSE IF( LEFT .AND. NOTRAN ) THEN
 | |
| *
 | |
|          KF = ((K-1)/NB)*NB+1
 | |
|          DO I = KF, 1, -NB
 | |
|             IB = MIN( NB, K-I+1 )
 | |
|             MB = MIN( M-L+I+IB-1, M )
 | |
|             IF( I.GE.L ) THEN
 | |
|                LB = 0
 | |
|             ELSE
 | |
|                LB = MB-M+L-I+1
 | |
|             END IF
 | |
|             CALL CTPRFB( 'L', 'N', 'F', 'C', MB, N, IB, LB,
 | |
|      $                   V( 1, I ), LDV, T( 1, I ), LDT,
 | |
|      $                   A( I, 1 ), LDA, B, LDB, WORK, IB )
 | |
|          END DO
 | |
| *
 | |
|       ELSE IF( RIGHT .AND. TRAN ) THEN
 | |
| *
 | |
|          KF = ((K-1)/NB)*NB+1
 | |
|          DO I = KF, 1, -NB
 | |
|             IB = MIN( NB, K-I+1 )
 | |
|             MB = MIN( N-L+I+IB-1, N )
 | |
|             IF( I.GE.L ) THEN
 | |
|                LB = 0
 | |
|             ELSE
 | |
|                LB = MB-N+L-I+1
 | |
|             END IF
 | |
|             CALL CTPRFB( 'R', 'C', 'F', 'C', M, MB, IB, LB,
 | |
|      $                   V( 1, I ), LDV, T( 1, I ), LDT,
 | |
|      $                   A( 1, I ), LDA, B, LDB, WORK, M )
 | |
|          END DO
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CTPMQRT
 | |
| *
 | |
|       END
 |