667 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			667 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CTGSJA
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CTGSJA + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctgsja.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctgsja.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctgsja.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B,
 | |
| *                          LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV,
 | |
| *                          Q, LDQ, WORK, NCYCLE, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBQ, JOBU, JOBV
 | |
| *       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N,
 | |
| *      $                   NCYCLE, P
 | |
| *       REAL               TOLA, TOLB
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               ALPHA( * ), BETA( * )
 | |
| *       COMPLEX            A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
 | |
| *      $                   U( LDU, * ), V( LDV, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CTGSJA computes the generalized singular value decomposition (GSVD)
 | |
| *> of two complex upper triangular (or trapezoidal) matrices A and B.
 | |
| *>
 | |
| *> On entry, it is assumed that matrices A and B have the following
 | |
| *> forms, which may be obtained by the preprocessing subroutine CGGSVP
 | |
| *> from a general M-by-N matrix A and P-by-N matrix B:
 | |
| *>
 | |
| *>              N-K-L  K    L
 | |
| *>    A =    K ( 0    A12  A13 ) if M-K-L >= 0;
 | |
| *>           L ( 0     0   A23 )
 | |
| *>       M-K-L ( 0     0    0  )
 | |
| *>
 | |
| *>            N-K-L  K    L
 | |
| *>    A =  K ( 0    A12  A13 ) if M-K-L < 0;
 | |
| *>       M-K ( 0     0   A23 )
 | |
| *>
 | |
| *>            N-K-L  K    L
 | |
| *>    B =  L ( 0     0   B13 )
 | |
| *>       P-L ( 0     0    0  )
 | |
| *>
 | |
| *> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
 | |
| *> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
 | |
| *> otherwise A23 is (M-K)-by-L upper trapezoidal.
 | |
| *>
 | |
| *> On exit,
 | |
| *>
 | |
| *>        U**H *A*Q = D1*( 0 R ),    V**H *B*Q = D2*( 0 R ),
 | |
| *>
 | |
| *> where U, V and Q are unitary matrices.
 | |
| *> R is a nonsingular upper triangular matrix, and D1
 | |
| *> and D2 are ``diagonal'' matrices, which are of the following
 | |
| *> structures:
 | |
| *>
 | |
| *> If M-K-L >= 0,
 | |
| *>
 | |
| *>                     K  L
 | |
| *>        D1 =     K ( I  0 )
 | |
| *>                 L ( 0  C )
 | |
| *>             M-K-L ( 0  0 )
 | |
| *>
 | |
| *>                    K  L
 | |
| *>        D2 = L   ( 0  S )
 | |
| *>             P-L ( 0  0 )
 | |
| *>
 | |
| *>                N-K-L  K    L
 | |
| *>   ( 0 R ) = K (  0   R11  R12 ) K
 | |
| *>             L (  0    0   R22 ) L
 | |
| *>
 | |
| *> where
 | |
| *>
 | |
| *>   C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
 | |
| *>   S = diag( BETA(K+1),  ... , BETA(K+L) ),
 | |
| *>   C**2 + S**2 = I.
 | |
| *>
 | |
| *>   R is stored in A(1:K+L,N-K-L+1:N) on exit.
 | |
| *>
 | |
| *> If M-K-L < 0,
 | |
| *>
 | |
| *>                K M-K K+L-M
 | |
| *>     D1 =   K ( I  0    0   )
 | |
| *>          M-K ( 0  C    0   )
 | |
| *>
 | |
| *>                  K M-K K+L-M
 | |
| *>     D2 =   M-K ( 0  S    0   )
 | |
| *>          K+L-M ( 0  0    I   )
 | |
| *>            P-L ( 0  0    0   )
 | |
| *>
 | |
| *>                N-K-L  K   M-K  K+L-M
 | |
| *> ( 0 R ) =    K ( 0    R11  R12  R13  )
 | |
| *>           M-K ( 0     0   R22  R23  )
 | |
| *>         K+L-M ( 0     0    0   R33  )
 | |
| *>
 | |
| *> where
 | |
| *> C = diag( ALPHA(K+1), ... , ALPHA(M) ),
 | |
| *> S = diag( BETA(K+1),  ... , BETA(M) ),
 | |
| *> C**2 + S**2 = I.
 | |
| *>
 | |
| *> R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored
 | |
| *>     (  0  R22 R23 )
 | |
| *> in B(M-K+1:L,N+M-K-L+1:N) on exit.
 | |
| *>
 | |
| *> The computation of the unitary transformation matrices U, V or Q
 | |
| *> is optional.  These matrices may either be formed explicitly, or they
 | |
| *> may be postmultiplied into input matrices U1, V1, or Q1.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBU
 | |
| *> \verbatim
 | |
| *>          JOBU is CHARACTER*1
 | |
| *>          = 'U':  U must contain a unitary matrix U1 on entry, and
 | |
| *>                  the product U1*U is returned;
 | |
| *>          = 'I':  U is initialized to the unit matrix, and the
 | |
| *>                  unitary matrix U is returned;
 | |
| *>          = 'N':  U is not computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBV
 | |
| *> \verbatim
 | |
| *>          JOBV is CHARACTER*1
 | |
| *>          = 'V':  V must contain a unitary matrix V1 on entry, and
 | |
| *>                  the product V1*V is returned;
 | |
| *>          = 'I':  V is initialized to the unit matrix, and the
 | |
| *>                  unitary matrix V is returned;
 | |
| *>          = 'N':  V is not computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBQ
 | |
| *> \verbatim
 | |
| *>          JOBQ is CHARACTER*1
 | |
| *>          = 'Q':  Q must contain a unitary matrix Q1 on entry, and
 | |
| *>                  the product Q1*Q is returned;
 | |
| *>          = 'I':  Q is initialized to the unit matrix, and the
 | |
| *>                  unitary matrix Q is returned;
 | |
| *>          = 'N':  Q is not computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] P
 | |
| *> \verbatim
 | |
| *>          P is INTEGER
 | |
| *>          The number of rows of the matrix B.  P >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrices A and B.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] L
 | |
| *> \verbatim
 | |
| *>          L is INTEGER
 | |
| *>
 | |
| *>          K and L specify the subblocks in the input matrices A and B:
 | |
| *>          A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,,N-L+1:N)
 | |
| *>          of A and B, whose GSVD is going to be computed by CTGSJA.
 | |
| *>          See Further Details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          On entry, the M-by-N matrix A.
 | |
| *>          On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular
 | |
| *>          matrix R or part of R.  See Purpose for details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A. LDA >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX array, dimension (LDB,N)
 | |
| *>          On entry, the P-by-N matrix B.
 | |
| *>          On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains
 | |
| *>          a part of R.  See Purpose for details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B. LDB >= max(1,P).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TOLA
 | |
| *> \verbatim
 | |
| *>          TOLA is REAL
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TOLB
 | |
| *> \verbatim
 | |
| *>          TOLB is REAL
 | |
| *>
 | |
| *>          TOLA and TOLB are the convergence criteria for the Jacobi-
 | |
| *>          Kogbetliantz iteration procedure. Generally, they are the
 | |
| *>          same as used in the preprocessing step, say
 | |
| *>              TOLA = MAX(M,N)*norm(A)*MACHEPS,
 | |
| *>              TOLB = MAX(P,N)*norm(B)*MACHEPS.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ALPHA
 | |
| *> \verbatim
 | |
| *>          ALPHA is REAL array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BETA
 | |
| *> \verbatim
 | |
| *>          BETA is REAL array, dimension (N)
 | |
| *>
 | |
| *>          On exit, ALPHA and BETA contain the generalized singular
 | |
| *>          value pairs of A and B;
 | |
| *>            ALPHA(1:K) = 1,
 | |
| *>            BETA(1:K)  = 0,
 | |
| *>          and if M-K-L >= 0,
 | |
| *>            ALPHA(K+1:K+L) = diag(C),
 | |
| *>            BETA(K+1:K+L)  = diag(S),
 | |
| *>          or if M-K-L < 0,
 | |
| *>            ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
 | |
| *>            BETA(K+1:M) = S, BETA(M+1:K+L) = 1.
 | |
| *>          Furthermore, if K+L < N,
 | |
| *>            ALPHA(K+L+1:N) = 0
 | |
| *>            BETA(K+L+1:N)  = 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] U
 | |
| *> \verbatim
 | |
| *>          U is COMPLEX array, dimension (LDU,M)
 | |
| *>          On entry, if JOBU = 'U', U must contain a matrix U1 (usually
 | |
| *>          the unitary matrix returned by CGGSVP).
 | |
| *>          On exit,
 | |
| *>          if JOBU = 'I', U contains the unitary matrix U;
 | |
| *>          if JOBU = 'U', U contains the product U1*U.
 | |
| *>          If JOBU = 'N', U is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU
 | |
| *> \verbatim
 | |
| *>          LDU is INTEGER
 | |
| *>          The leading dimension of the array U. LDU >= max(1,M) if
 | |
| *>          JOBU = 'U'; LDU >= 1 otherwise.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] V
 | |
| *> \verbatim
 | |
| *>          V is COMPLEX array, dimension (LDV,P)
 | |
| *>          On entry, if JOBV = 'V', V must contain a matrix V1 (usually
 | |
| *>          the unitary matrix returned by CGGSVP).
 | |
| *>          On exit,
 | |
| *>          if JOBV = 'I', V contains the unitary matrix V;
 | |
| *>          if JOBV = 'V', V contains the product V1*V.
 | |
| *>          If JOBV = 'N', V is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDV
 | |
| *> \verbatim
 | |
| *>          LDV is INTEGER
 | |
| *>          The leading dimension of the array V. LDV >= max(1,P) if
 | |
| *>          JOBV = 'V'; LDV >= 1 otherwise.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Q
 | |
| *> \verbatim
 | |
| *>          Q is COMPLEX array, dimension (LDQ,N)
 | |
| *>          On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually
 | |
| *>          the unitary matrix returned by CGGSVP).
 | |
| *>          On exit,
 | |
| *>          if JOBQ = 'I', Q contains the unitary matrix Q;
 | |
| *>          if JOBQ = 'Q', Q contains the product Q1*Q.
 | |
| *>          If JOBQ = 'N', Q is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDQ
 | |
| *> \verbatim
 | |
| *>          LDQ is INTEGER
 | |
| *>          The leading dimension of the array Q. LDQ >= max(1,N) if
 | |
| *>          JOBQ = 'Q'; LDQ >= 1 otherwise.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (2*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] NCYCLE
 | |
| *> \verbatim
 | |
| *>          NCYCLE is INTEGER
 | |
| *>          The number of cycles required for convergence.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>          = 1:  the procedure does not converge after MAXIT cycles.
 | |
| *> \endverbatim
 | |
| *
 | |
| *> \par Internal Parameters:
 | |
| *  =========================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>  MAXIT   INTEGER
 | |
| *>          MAXIT specifies the total loops that the iterative procedure
 | |
| *>          may take. If after MAXIT cycles, the routine fails to
 | |
| *>          converge, we return INFO = 1.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup complexOTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  CTGSJA essentially uses a variant of Kogbetliantz algorithm to reduce
 | |
| *>  min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L
 | |
| *>  matrix B13 to the form:
 | |
| *>
 | |
| *>           U1**H *A13*Q1 = C1*R1; V1**H *B13*Q1 = S1*R1,
 | |
| *>
 | |
| *>  where U1, V1 and Q1 are unitary matrix.
 | |
| *>  C1 and S1 are diagonal matrices satisfying
 | |
| *>
 | |
| *>                C1**2 + S1**2 = I,
 | |
| *>
 | |
| *>  and R1 is an L-by-L nonsingular upper triangular matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CTGSJA( JOBU, JOBV, JOBQ, M, P, N, K, L, A, LDA, B,
 | |
|      $                   LDB, TOLA, TOLB, ALPHA, BETA, U, LDU, V, LDV,
 | |
|      $                   Q, LDQ, WORK, NCYCLE, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBQ, JOBU, JOBV
 | |
|       INTEGER            INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N,
 | |
|      $                   NCYCLE, P
 | |
|       REAL               TOLA, TOLB
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               ALPHA( * ), BETA( * )
 | |
|       COMPLEX            A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
 | |
|      $                   U( LDU, * ), V( LDV, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       INTEGER            MAXIT
 | |
|       PARAMETER          ( MAXIT = 40 )
 | |
|       REAL               ZERO, ONE, HUGENUM
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
|       COMPLEX            CZERO, CONE
 | |
|       PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
 | |
|      $                   CONE = ( 1.0E+0, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
| *
 | |
|       LOGICAL            INITQ, INITU, INITV, UPPER, WANTQ, WANTU, WANTV
 | |
|       INTEGER            I, J, KCYCLE
 | |
|       REAL               A1, A3, B1, B3, CSQ, CSU, CSV, ERROR, GAMMA,
 | |
|      $                   RWK, SSMIN
 | |
|       COMPLEX            A2, B2, SNQ, SNU, SNV
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CCOPY, CLAGS2, CLAPLL, CLASET, CROT, CSSCAL,
 | |
|      $                   SLARTG, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, CONJG, MAX, MIN, REAL, HUGE
 | |
|       PARAMETER          ( HUGENUM = HUGE(ZERO) )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Decode and test the input parameters
 | |
| *
 | |
|       INITU = LSAME( JOBU, 'I' )
 | |
|       WANTU = INITU .OR. LSAME( JOBU, 'U' )
 | |
| *
 | |
|       INITV = LSAME( JOBV, 'I' )
 | |
|       WANTV = INITV .OR. LSAME( JOBV, 'V' )
 | |
| *
 | |
|       INITQ = LSAME( JOBQ, 'I' )
 | |
|       WANTQ = INITQ .OR. LSAME( JOBQ, 'Q' )
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( .NOT.( INITU .OR. WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.( INITV .OR. WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( .NOT.( INITQ .OR. WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( M.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( P.LT.0 ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -10
 | |
|       ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
 | |
|          INFO = -12
 | |
|       ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
 | |
|          INFO = -18
 | |
|       ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
 | |
|          INFO = -20
 | |
|       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
 | |
|          INFO = -22
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CTGSJA', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Initialize U, V and Q, if necessary
 | |
| *
 | |
|       IF( INITU )
 | |
|      $   CALL CLASET( 'Full', M, M, CZERO, CONE, U, LDU )
 | |
|       IF( INITV )
 | |
|      $   CALL CLASET( 'Full', P, P, CZERO, CONE, V, LDV )
 | |
|       IF( INITQ )
 | |
|      $   CALL CLASET( 'Full', N, N, CZERO, CONE, Q, LDQ )
 | |
| *
 | |
| *     Loop until convergence
 | |
| *
 | |
|       UPPER = .FALSE.
 | |
|       DO 40 KCYCLE = 1, MAXIT
 | |
| *
 | |
|          UPPER = .NOT.UPPER
 | |
| *
 | |
|          DO 20 I = 1, L - 1
 | |
|             DO 10 J = I + 1, L
 | |
| *
 | |
|                A1 = ZERO
 | |
|                A2 = CZERO
 | |
|                A3 = ZERO
 | |
|                IF( K+I.LE.M )
 | |
|      $            A1 = REAL( A( K+I, N-L+I ) )
 | |
|                IF( K+J.LE.M )
 | |
|      $            A3 = REAL( A( K+J, N-L+J ) )
 | |
| *
 | |
|                B1 = REAL( B( I, N-L+I ) )
 | |
|                B3 = REAL( B( J, N-L+J ) )
 | |
| *
 | |
|                IF( UPPER ) THEN
 | |
|                   IF( K+I.LE.M )
 | |
|      $               A2 = A( K+I, N-L+J )
 | |
|                   B2 = B( I, N-L+J )
 | |
|                ELSE
 | |
|                   IF( K+J.LE.M )
 | |
|      $               A2 = A( K+J, N-L+I )
 | |
|                   B2 = B( J, N-L+I )
 | |
|                END IF
 | |
| *
 | |
|                CALL CLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU,
 | |
|      $                      CSV, SNV, CSQ, SNQ )
 | |
| *
 | |
| *              Update (K+I)-th and (K+J)-th rows of matrix A: U**H *A
 | |
| *
 | |
|                IF( K+J.LE.M )
 | |
|      $            CALL CROT( L, A( K+J, N-L+1 ), LDA, A( K+I, N-L+1 ),
 | |
|      $                       LDA, CSU, CONJG( SNU ) )
 | |
| *
 | |
| *              Update I-th and J-th rows of matrix B: V**H *B
 | |
| *
 | |
|                CALL CROT( L, B( J, N-L+1 ), LDB, B( I, N-L+1 ), LDB,
 | |
|      $                    CSV, CONJG( SNV ) )
 | |
| *
 | |
| *              Update (N-L+I)-th and (N-L+J)-th columns of matrices
 | |
| *              A and B: A*Q and B*Q
 | |
| *
 | |
|                CALL CROT( MIN( K+L, M ), A( 1, N-L+J ), 1,
 | |
|      $                    A( 1, N-L+I ), 1, CSQ, SNQ )
 | |
| *
 | |
|                CALL CROT( L, B( 1, N-L+J ), 1, B( 1, N-L+I ), 1, CSQ,
 | |
|      $                    SNQ )
 | |
| *
 | |
|                IF( UPPER ) THEN
 | |
|                   IF( K+I.LE.M )
 | |
|      $               A( K+I, N-L+J ) = CZERO
 | |
|                   B( I, N-L+J ) = CZERO
 | |
|                ELSE
 | |
|                   IF( K+J.LE.M )
 | |
|      $               A( K+J, N-L+I ) = CZERO
 | |
|                   B( J, N-L+I ) = CZERO
 | |
|                END IF
 | |
| *
 | |
| *              Ensure that the diagonal elements of A and B are real.
 | |
| *
 | |
|                IF( K+I.LE.M )
 | |
|      $            A( K+I, N-L+I ) = REAL( A( K+I, N-L+I ) )
 | |
|                IF( K+J.LE.M )
 | |
|      $            A( K+J, N-L+J ) = REAL( A( K+J, N-L+J ) )
 | |
|                B( I, N-L+I ) = REAL( B( I, N-L+I ) )
 | |
|                B( J, N-L+J ) = REAL( B( J, N-L+J ) )
 | |
| *
 | |
| *              Update unitary matrices U, V, Q, if desired.
 | |
| *
 | |
|                IF( WANTU .AND. K+J.LE.M )
 | |
|      $            CALL CROT( M, U( 1, K+J ), 1, U( 1, K+I ), 1, CSU,
 | |
|      $                       SNU )
 | |
| *
 | |
|                IF( WANTV )
 | |
|      $            CALL CROT( P, V( 1, J ), 1, V( 1, I ), 1, CSV, SNV )
 | |
| *
 | |
|                IF( WANTQ )
 | |
|      $            CALL CROT( N, Q( 1, N-L+J ), 1, Q( 1, N-L+I ), 1, CSQ,
 | |
|      $                       SNQ )
 | |
| *
 | |
|    10       CONTINUE
 | |
|    20    CONTINUE
 | |
| *
 | |
|          IF( .NOT.UPPER ) THEN
 | |
| *
 | |
| *           The matrices A13 and B13 were lower triangular at the start
 | |
| *           of the cycle, and are now upper triangular.
 | |
| *
 | |
| *           Convergence test: test the parallelism of the corresponding
 | |
| *           rows of A and B.
 | |
| *
 | |
|             ERROR = ZERO
 | |
|             DO 30 I = 1, MIN( L, M-K )
 | |
|                CALL CCOPY( L-I+1, A( K+I, N-L+I ), LDA, WORK, 1 )
 | |
|                CALL CCOPY( L-I+1, B( I, N-L+I ), LDB, WORK( L+1 ), 1 )
 | |
|                CALL CLAPLL( L-I+1, WORK, 1, WORK( L+1 ), 1, SSMIN )
 | |
|                ERROR = MAX( ERROR, SSMIN )
 | |
|    30       CONTINUE
 | |
| *
 | |
|             IF( ABS( ERROR ).LE.MIN( TOLA, TOLB ) )
 | |
|      $         GO TO 50
 | |
|          END IF
 | |
| *
 | |
| *        End of cycle loop
 | |
| *
 | |
|    40 CONTINUE
 | |
| *
 | |
| *     The algorithm has not converged after MAXIT cycles.
 | |
| *
 | |
|       INFO = 1
 | |
|       GO TO 100
 | |
| *
 | |
|    50 CONTINUE
 | |
| *
 | |
| *     If ERROR <= MIN(TOLA,TOLB), then the algorithm has converged.
 | |
| *     Compute the generalized singular value pairs (ALPHA, BETA), and
 | |
| *     set the triangular matrix R to array A.
 | |
| *
 | |
|       DO 60 I = 1, K
 | |
|          ALPHA( I ) = ONE
 | |
|          BETA( I ) = ZERO
 | |
|    60 CONTINUE
 | |
| *
 | |
|       DO 70 I = 1, MIN( L, M-K )
 | |
| *
 | |
|          A1 = REAL( A( K+I, N-L+I ) )
 | |
|          B1 = REAL( B( I, N-L+I ) )
 | |
|          GAMMA = B1 / A1
 | |
| *
 | |
|          IF( (GAMMA.LE.HUGENUM).AND.(GAMMA.GE.-HUGENUM) ) THEN
 | |
| *
 | |
|             IF( GAMMA.LT.ZERO ) THEN
 | |
|                CALL CSSCAL( L-I+1, -ONE, B( I, N-L+I ), LDB )
 | |
|                IF( WANTV )
 | |
|      $            CALL CSSCAL( P, -ONE, V( 1, I ), 1 )
 | |
|             END IF
 | |
| *
 | |
|             CALL SLARTG( ABS( GAMMA ), ONE, BETA( K+I ), ALPHA( K+I ),
 | |
|      $                   RWK )
 | |
| *
 | |
|             IF( ALPHA( K+I ).GE.BETA( K+I ) ) THEN
 | |
|                CALL CSSCAL( L-I+1, ONE / ALPHA( K+I ), A( K+I, N-L+I ),
 | |
|      $                      LDA )
 | |
|             ELSE
 | |
|                CALL CSSCAL( L-I+1, ONE / BETA( K+I ), B( I, N-L+I ),
 | |
|      $                      LDB )
 | |
|                CALL CCOPY( L-I+1, B( I, N-L+I ), LDB, A( K+I, N-L+I ),
 | |
|      $                     LDA )
 | |
|             END IF
 | |
| *
 | |
|          ELSE
 | |
|             ALPHA( K+I ) = ZERO
 | |
|             BETA( K+I ) = ONE
 | |
|             CALL CCOPY( L-I+1, B( I, N-L+I ), LDB, A( K+I, N-L+I ),
 | |
|      $                  LDA )
 | |
|          END IF
 | |
|    70 CONTINUE
 | |
| *
 | |
| *     Post-assignment
 | |
| *
 | |
|       DO 80 I = M + 1, K + L
 | |
|          ALPHA( I ) = ZERO
 | |
|          BETA( I ) = ONE
 | |
|    80 CONTINUE
 | |
| *
 | |
|       IF( K+L.LT.N ) THEN
 | |
|          DO 90 I = K + L + 1, N
 | |
|             ALPHA( I ) = ZERO
 | |
|             BETA( I ) = ZERO
 | |
|    90    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|   100 CONTINUE
 | |
|       NCYCLE = KCYCLE
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CTGSJA
 | |
| *
 | |
|       END
 |