283 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			283 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CSYCON_3
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CSYCON_3 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csycon_3.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csycon_3.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csycon_3.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CSYCON_3( UPLO, N, A, LDA, E, IPIV, ANORM, RCOND,
 | |
| *                            WORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INFO, LDA, N
 | |
| *       REAL               ANORM, RCOND
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       COMPLEX            A( LDA, * ), E ( * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *> CSYCON_3 estimates the reciprocal of the condition number (in the
 | |
| *> 1-norm) of a complex symmetric matrix A using the factorization
 | |
| *> computed by CSYTRF_RK or CSYTRF_BK:
 | |
| *>
 | |
| *>    A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),
 | |
| *>
 | |
| *> where U (or L) is unit upper (or lower) triangular matrix,
 | |
| *> U**T (or L**T) is the transpose of U (or L), P is a permutation
 | |
| *> matrix, P**T is the transpose of P, and D is symmetric and block
 | |
| *> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
 | |
| *>
 | |
| *> An estimate is obtained for norm(inv(A)), and the reciprocal of the
 | |
| *> condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
 | |
| *> This routine uses BLAS3 solver CSYTRS_3.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the details of the factorization are
 | |
| *>          stored as an upper or lower triangular matrix:
 | |
| *>          = 'U':  Upper triangular, form is A = P*U*D*(U**T)*(P**T);
 | |
| *>          = 'L':  Lower triangular, form is A = P*L*D*(L**T)*(P**T).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          Diagonal of the block diagonal matrix D and factors U or L
 | |
| *>          as computed by CSYTRF_RK and CSYTRF_BK:
 | |
| *>            a) ONLY diagonal elements of the symmetric block diagonal
 | |
| *>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
 | |
| *>               (superdiagonal (or subdiagonal) elements of D
 | |
| *>                should be provided on entry in array E), and
 | |
| *>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
 | |
| *>               If UPLO = 'L': factor L in the subdiagonal part of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] E
 | |
| *> \verbatim
 | |
| *>          E is COMPLEX array, dimension (N)
 | |
| *>          On entry, contains the superdiagonal (or subdiagonal)
 | |
| *>          elements of the symmetric block diagonal matrix D
 | |
| *>          with 1-by-1 or 2-by-2 diagonal blocks, where
 | |
| *>          If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
 | |
| *>          If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
 | |
| *>
 | |
| *>          NOTE: For 1-by-1 diagonal block D(k), where
 | |
| *>          1 <= k <= N, the element E(k) is not referenced in both
 | |
| *>          UPLO = 'U' or UPLO = 'L' cases.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>          Details of the interchanges and the block structure of D
 | |
| *>          as determined by CSYTRF_RK or CSYTRF_BK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ANORM
 | |
| *> \verbatim
 | |
| *>          ANORM is REAL
 | |
| *>          The 1-norm of the original matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RCOND
 | |
| *> \verbatim
 | |
| *>          RCOND is REAL
 | |
| *>          The reciprocal of the condition number of the matrix A,
 | |
| *>          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
 | |
| *>          estimate of the 1-norm of inv(A) computed in this routine.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (2*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date June 2017
 | |
| *
 | |
| *> \ingroup complexSYcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  June 2017,  Igor Kozachenko,
 | |
| *>                  Computer Science Division,
 | |
| *>                  University of California, Berkeley
 | |
| *>
 | |
| *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
 | |
| *>                  School of Mathematics,
 | |
| *>                  University of Manchester
 | |
| *>
 | |
| *> \endverbatim
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CSYCON_3( UPLO, N, A, LDA, E, IPIV, ANORM, RCOND,
 | |
|      $                     WORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.7.1) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     June 2017
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, LDA, N
 | |
|       REAL               ANORM, RCOND
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       COMPLEX            A( LDA, * ), E( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | |
|       COMPLEX            CZERO
 | |
|       PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            UPPER
 | |
|       INTEGER            I, KASE
 | |
|       REAL               AINVNM
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            ISAVE( 3 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CLACN2, CSYTRS_3, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( ANORM.LT.ZERO ) THEN
 | |
|          INFO = -7
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CSYCON_3', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       RCOND = ZERO
 | |
|       IF( N.EQ.0 ) THEN
 | |
|          RCOND = ONE
 | |
|          RETURN
 | |
|       ELSE IF( ANORM.LE.ZERO ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Check that the diagonal matrix D is nonsingular.
 | |
| *
 | |
|       IF( UPPER ) THEN
 | |
| *
 | |
| *        Upper triangular storage: examine D from bottom to top
 | |
| *
 | |
|          DO I = N, 1, -1
 | |
|             IF( IPIV( I ).GT.0 .AND. A( I, I ).EQ.CZERO )
 | |
|      $         RETURN
 | |
|          END DO
 | |
|       ELSE
 | |
| *
 | |
| *        Lower triangular storage: examine D from top to bottom.
 | |
| *
 | |
|          DO I = 1, N
 | |
|             IF( IPIV( I ).GT.0 .AND. A( I, I ).EQ.CZERO )
 | |
|      $         RETURN
 | |
|          END DO
 | |
|       END IF
 | |
| *
 | |
| *     Estimate the 1-norm of the inverse.
 | |
| *
 | |
|       KASE = 0
 | |
|    30 CONTINUE
 | |
|       CALL CLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
 | |
|       IF( KASE.NE.0 ) THEN
 | |
| *
 | |
| *        Multiply by inv(L*D*L**T) or inv(U*D*U**T).
 | |
| *
 | |
|          CALL CSYTRS_3( UPLO, N, 1, A, LDA, E, IPIV, WORK, N, INFO )
 | |
|          GO TO 30
 | |
|       END IF
 | |
| *
 | |
| *     Compute the estimate of the reciprocal condition number.
 | |
| *
 | |
|       IF( AINVNM.NE.ZERO )
 | |
|      $   RCOND = ( ONE / AINVNM ) / ANORM
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CSYCON_3
 | |
| *
 | |
|       END
 |