975 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			975 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CLASYF_RK computes a partial factorization of a complex symmetric indefinite matrix using bounded Bunch-Kaufman (rook) diagonal pivoting method.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CLASYF_RK + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clasyf_rk.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clasyf_rk.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clasyf_rk.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CLASYF_RK( UPLO, N, NB, KB, A, LDA, E, IPIV, W, LDW,
 | |
| *                             INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INFO, KB, LDA, LDW, N, NB
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       COMPLEX            A( LDA, * ), E( * ), W( LDW, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *> CLASYF_RK computes a partial factorization of a complex symmetric
 | |
| *> matrix A using the bounded Bunch-Kaufman (rook) diagonal
 | |
| *> pivoting method. The partial factorization has the form:
 | |
| *>
 | |
| *> A  =  ( I  U12 ) ( A11  0  ) (  I       0    )  if UPLO = 'U', or:
 | |
| *>       ( 0  U22 ) (  0   D  ) ( U12**T U22**T )
 | |
| *>
 | |
| *> A  =  ( L11  0 ) (  D   0  ) ( L11**T L21**T )  if UPLO = 'L',
 | |
| *>       ( L21  I ) (  0  A22 ) (  0       I    )
 | |
| *>
 | |
| *> where the order of D is at most NB. The actual order is returned in
 | |
| *> the argument KB, and is either NB or NB-1, or N if N <= NB.
 | |
| *>
 | |
| *> CLASYF_RK is an auxiliary routine called by CSYTRF_RK. It uses
 | |
| *> blocked code (calling Level 3 BLAS) to update the submatrix
 | |
| *> A11 (if UPLO = 'U') or A22 (if UPLO = 'L').
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the upper or lower triangular part of the
 | |
| *>          symmetric matrix A is stored:
 | |
| *>          = 'U':  Upper triangular
 | |
| *>          = 'L':  Lower triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NB
 | |
| *> \verbatim
 | |
| *>          NB is INTEGER
 | |
| *>          The maximum number of columns of the matrix A that should be
 | |
| *>          factored.  NB should be at least 2 to allow for 2-by-2 pivot
 | |
| *>          blocks.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] KB
 | |
| *> \verbatim
 | |
| *>          KB is INTEGER
 | |
| *>          The number of columns of A that were actually factored.
 | |
| *>          KB is either NB-1 or NB, or N if N <= NB.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          On entry, the symmetric matrix A.
 | |
| *>            If UPLO = 'U': the leading N-by-N upper triangular part
 | |
| *>            of A contains the upper triangular part of the matrix A,
 | |
| *>            and the strictly lower triangular part of A is not
 | |
| *>            referenced.
 | |
| *>
 | |
| *>            If UPLO = 'L': the leading N-by-N lower triangular part
 | |
| *>            of A contains the lower triangular part of the matrix A,
 | |
| *>            and the strictly upper triangular part of A is not
 | |
| *>            referenced.
 | |
| *>
 | |
| *>          On exit, contains:
 | |
| *>            a) ONLY diagonal elements of the symmetric block diagonal
 | |
| *>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
 | |
| *>               (superdiagonal (or subdiagonal) elements of D
 | |
| *>                are stored on exit in array E), and
 | |
| *>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
 | |
| *>               If UPLO = 'L': factor L in the subdiagonal part of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] E
 | |
| *> \verbatim
 | |
| *>          E is COMPLEX array, dimension (N)
 | |
| *>          On exit, contains the superdiagonal (or subdiagonal)
 | |
| *>          elements of the symmetric block diagonal matrix D
 | |
| *>          with 1-by-1 or 2-by-2 diagonal blocks, where
 | |
| *>          If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
 | |
| *>          If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
 | |
| *>
 | |
| *>          NOTE: For 1-by-1 diagonal block D(k), where
 | |
| *>          1 <= k <= N, the element E(k) is set to 0 in both
 | |
| *>          UPLO = 'U' or UPLO = 'L' cases.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>          IPIV describes the permutation matrix P in the factorization
 | |
| *>          of matrix A as follows. The absolute value of IPIV(k)
 | |
| *>          represents the index of row and column that were
 | |
| *>          interchanged with the k-th row and column. The value of UPLO
 | |
| *>          describes the order in which the interchanges were applied.
 | |
| *>          Also, the sign of IPIV represents the block structure of
 | |
| *>          the symmetric block diagonal matrix D with 1-by-1 or 2-by-2
 | |
| *>          diagonal blocks which correspond to 1 or 2 interchanges
 | |
| *>          at each factorization step.
 | |
| *>
 | |
| *>          If UPLO = 'U',
 | |
| *>          ( in factorization order, k decreases from N to 1 ):
 | |
| *>            a) A single positive entry IPIV(k) > 0 means:
 | |
| *>               D(k,k) is a 1-by-1 diagonal block.
 | |
| *>               If IPIV(k) != k, rows and columns k and IPIV(k) were
 | |
| *>               interchanged in the submatrix A(1:N,N-KB+1:N);
 | |
| *>               If IPIV(k) = k, no interchange occurred.
 | |
| *>
 | |
| *>
 | |
| *>            b) A pair of consecutive negative entries
 | |
| *>               IPIV(k) < 0 and IPIV(k-1) < 0 means:
 | |
| *>               D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
 | |
| *>               (NOTE: negative entries in IPIV appear ONLY in pairs).
 | |
| *>               1) If -IPIV(k) != k, rows and columns
 | |
| *>                  k and -IPIV(k) were interchanged
 | |
| *>                  in the matrix A(1:N,N-KB+1:N).
 | |
| *>                  If -IPIV(k) = k, no interchange occurred.
 | |
| *>               2) If -IPIV(k-1) != k-1, rows and columns
 | |
| *>                  k-1 and -IPIV(k-1) were interchanged
 | |
| *>                  in the submatrix A(1:N,N-KB+1:N).
 | |
| *>                  If -IPIV(k-1) = k-1, no interchange occurred.
 | |
| *>
 | |
| *>            c) In both cases a) and b) is always ABS( IPIV(k) ) <= k.
 | |
| *>
 | |
| *>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
 | |
| *>
 | |
| *>          If UPLO = 'L',
 | |
| *>          ( in factorization order, k increases from 1 to N ):
 | |
| *>            a) A single positive entry IPIV(k) > 0 means:
 | |
| *>               D(k,k) is a 1-by-1 diagonal block.
 | |
| *>               If IPIV(k) != k, rows and columns k and IPIV(k) were
 | |
| *>               interchanged in the submatrix A(1:N,1:KB).
 | |
| *>               If IPIV(k) = k, no interchange occurred.
 | |
| *>
 | |
| *>            b) A pair of consecutive negative entries
 | |
| *>               IPIV(k) < 0 and IPIV(k+1) < 0 means:
 | |
| *>               D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
 | |
| *>               (NOTE: negative entries in IPIV appear ONLY in pairs).
 | |
| *>               1) If -IPIV(k) != k, rows and columns
 | |
| *>                  k and -IPIV(k) were interchanged
 | |
| *>                  in the submatrix A(1:N,1:KB).
 | |
| *>                  If -IPIV(k) = k, no interchange occurred.
 | |
| *>               2) If -IPIV(k+1) != k+1, rows and columns
 | |
| *>                  k-1 and -IPIV(k-1) were interchanged
 | |
| *>                  in the submatrix A(1:N,1:KB).
 | |
| *>                  If -IPIV(k+1) = k+1, no interchange occurred.
 | |
| *>
 | |
| *>            c) In both cases a) and b) is always ABS( IPIV(k) ) >= k.
 | |
| *>
 | |
| *>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] W
 | |
| *> \verbatim
 | |
| *>          W is COMPLEX array, dimension (LDW,NB)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDW
 | |
| *> \verbatim
 | |
| *>          LDW is INTEGER
 | |
| *>          The leading dimension of the array W.  LDW >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>
 | |
| *>          < 0: If INFO = -k, the k-th argument had an illegal value
 | |
| *>
 | |
| *>          > 0: If INFO = k, the matrix A is singular, because:
 | |
| *>                 If UPLO = 'U': column k in the upper
 | |
| *>                 triangular part of A contains all zeros.
 | |
| *>                 If UPLO = 'L': column k in the lower
 | |
| *>                 triangular part of A contains all zeros.
 | |
| *>
 | |
| *>               Therefore D(k,k) is exactly zero, and superdiagonal
 | |
| *>               elements of column k of U (or subdiagonal elements of
 | |
| *>               column k of L ) are all zeros. The factorization has
 | |
| *>               been completed, but the block diagonal matrix D is
 | |
| *>               exactly singular, and division by zero will occur if
 | |
| *>               it is used to solve a system of equations.
 | |
| *>
 | |
| *>               NOTE: INFO only stores the first occurrence of
 | |
| *>               a singularity, any subsequent occurrence of singularity
 | |
| *>               is not stored in INFO even though the factorization
 | |
| *>               always completes.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup complexSYcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  December 2016,  Igor Kozachenko,
 | |
| *>                  Computer Science Division,
 | |
| *>                  University of California, Berkeley
 | |
| *>
 | |
| *>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
 | |
| *>                  School of Mathematics,
 | |
| *>                  University of Manchester
 | |
| *>
 | |
| *> \endverbatim
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CLASYF_RK( UPLO, N, NB, KB, A, LDA, E, IPIV, W, LDW,
 | |
|      $                      INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, KB, LDA, LDW, N, NB
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       COMPLEX            A( LDA, * ), E( * ), W( LDW, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
|       REAL               EIGHT, SEVTEN
 | |
|       PARAMETER          ( EIGHT = 8.0E+0, SEVTEN = 17.0E+0 )
 | |
|       COMPLEX            CONE, CZERO
 | |
|       PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ),
 | |
|      $                   CZERO = ( 0.0E+0, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            DONE
 | |
|       INTEGER            IMAX, ITEMP, J, JB, JJ, JMAX, K, KK, KW, KKW,
 | |
|      $                   KP, KSTEP, P, II
 | |
|       REAL               ABSAKK, ALPHA, COLMAX, ROWMAX, SFMIN, STEMP
 | |
|       COMPLEX            D11, D12, D21, D22, R1, T, Z
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ICAMAX
 | |
|       REAL               SLAMCH
 | |
|       EXTERNAL           LSAME, ICAMAX, SLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CCOPY, CGEMM, CGEMV, CSCAL, CSWAP
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, AIMAG, MAX, MIN, REAL, SQRT
 | |
| *     ..
 | |
| *     .. Statement Functions ..
 | |
|       REAL               CABS1
 | |
| *     ..
 | |
| *     .. Statement Function definitions ..
 | |
|       CABS1( Z ) = ABS( REAL( Z ) ) + ABS( AIMAG( Z ) )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
| *     Initialize ALPHA for use in choosing pivot block size.
 | |
| *
 | |
|       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
 | |
| *
 | |
| *     Compute machine safe minimum
 | |
| *
 | |
|       SFMIN = SLAMCH( 'S' )
 | |
| *
 | |
|       IF( LSAME( UPLO, 'U' ) ) THEN
 | |
| *
 | |
| *        Factorize the trailing columns of A using the upper triangle
 | |
| *        of A and working backwards, and compute the matrix W = U12*D
 | |
| *        for use in updating A11
 | |
| *
 | |
| *        Initialize the first entry of array E, where superdiagonal
 | |
| *        elements of D are stored
 | |
| *
 | |
|          E( 1 ) = CZERO
 | |
| *
 | |
| *        K is the main loop index, decreasing from N in steps of 1 or 2
 | |
| *
 | |
|          K = N
 | |
|    10    CONTINUE
 | |
| *
 | |
| *        KW is the column of W which corresponds to column K of A
 | |
| *
 | |
|          KW = NB + K - N
 | |
| *
 | |
| *        Exit from loop
 | |
| *
 | |
|          IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
 | |
|      $      GO TO 30
 | |
| *
 | |
|          KSTEP = 1
 | |
|          P = K
 | |
| *
 | |
| *        Copy column K of A to column KW of W and update it
 | |
| *
 | |
|          CALL CCOPY( K, A( 1, K ), 1, W( 1, KW ), 1 )
 | |
|          IF( K.LT.N )
 | |
|      $      CALL CGEMV( 'No transpose', K, N-K, -CONE, A( 1, K+1 ),
 | |
|      $                  LDA, W( K, KW+1 ), LDW, CONE, W( 1, KW ), 1 )
 | |
| *
 | |
| *        Determine rows and columns to be interchanged and whether
 | |
| *        a 1-by-1 or 2-by-2 pivot block will be used
 | |
| *
 | |
|          ABSAKK = CABS1( W( K, KW ) )
 | |
| *
 | |
| *        IMAX is the row-index of the largest off-diagonal element in
 | |
| *        column K, and COLMAX is its absolute value.
 | |
| *        Determine both COLMAX and IMAX.
 | |
| *
 | |
|          IF( K.GT.1 ) THEN
 | |
|             IMAX = ICAMAX( K-1, W( 1, KW ), 1 )
 | |
|             COLMAX = CABS1( W( IMAX, KW ) )
 | |
|          ELSE
 | |
|             COLMAX = ZERO
 | |
|          END IF
 | |
| *
 | |
|          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
 | |
| *
 | |
| *           Column K is zero or underflow: set INFO and continue
 | |
| *
 | |
|             IF( INFO.EQ.0 )
 | |
|      $         INFO = K
 | |
|             KP = K
 | |
|             CALL CCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
 | |
| *
 | |
| *           Set E( K ) to zero
 | |
| *
 | |
|             IF( K.GT.1 )
 | |
|      $         E( K ) = CZERO
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           ============================================================
 | |
| *
 | |
| *           Test for interchange
 | |
| *
 | |
| *           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
 | |
| *           (used to handle NaN and Inf)
 | |
| *
 | |
|             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
 | |
| *
 | |
| *              no interchange, use 1-by-1 pivot block
 | |
| *
 | |
|                KP = K
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
|                DONE = .FALSE.
 | |
| *
 | |
| *              Loop until pivot found
 | |
| *
 | |
|    12          CONTINUE
 | |
| *
 | |
| *                 Begin pivot search loop body
 | |
| *
 | |
| *
 | |
| *                 Copy column IMAX to column KW-1 of W and update it
 | |
| *
 | |
|                   CALL CCOPY( IMAX, A( 1, IMAX ), 1, W( 1, KW-1 ), 1 )
 | |
|                   CALL CCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
 | |
|      $                        W( IMAX+1, KW-1 ), 1 )
 | |
| *
 | |
|                   IF( K.LT.N )
 | |
|      $               CALL CGEMV( 'No transpose', K, N-K, -CONE,
 | |
|      $                           A( 1, K+1 ), LDA, W( IMAX, KW+1 ), LDW,
 | |
|      $                           CONE, W( 1, KW-1 ), 1 )
 | |
| *
 | |
| *                 JMAX is the column-index of the largest off-diagonal
 | |
| *                 element in row IMAX, and ROWMAX is its absolute value.
 | |
| *                 Determine both ROWMAX and JMAX.
 | |
| *
 | |
|                   IF( IMAX.NE.K ) THEN
 | |
|                      JMAX = IMAX + ICAMAX( K-IMAX, W( IMAX+1, KW-1 ),
 | |
|      $                                     1 )
 | |
|                      ROWMAX = CABS1( W( JMAX, KW-1 ) )
 | |
|                   ELSE
 | |
|                      ROWMAX = ZERO
 | |
|                   END IF
 | |
| *
 | |
|                   IF( IMAX.GT.1 ) THEN
 | |
|                      ITEMP = ICAMAX( IMAX-1, W( 1, KW-1 ), 1 )
 | |
|                      STEMP = CABS1( W( ITEMP, KW-1 ) )
 | |
|                      IF( STEMP.GT.ROWMAX ) THEN
 | |
|                         ROWMAX = STEMP
 | |
|                         JMAX = ITEMP
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
| *                 Equivalent to testing for
 | |
| *                 CABS1( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX
 | |
| *                 (used to handle NaN and Inf)
 | |
| *
 | |
|                   IF( .NOT.(CABS1( W( IMAX, KW-1 ) ).LT.ALPHA*ROWMAX ) )
 | |
|      $            THEN
 | |
| *
 | |
| *                    interchange rows and columns K and IMAX,
 | |
| *                    use 1-by-1 pivot block
 | |
| *
 | |
|                      KP = IMAX
 | |
| *
 | |
| *                    copy column KW-1 of W to column KW of W
 | |
| *
 | |
|                      CALL CCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
 | |
| *
 | |
|                      DONE = .TRUE.
 | |
| *
 | |
| *                 Equivalent to testing for ROWMAX.EQ.COLMAX,
 | |
| *                 (used to handle NaN and Inf)
 | |
| *
 | |
|                   ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
 | |
|      $            THEN
 | |
| *
 | |
| *                    interchange rows and columns K-1 and IMAX,
 | |
| *                    use 2-by-2 pivot block
 | |
| *
 | |
|                      KP = IMAX
 | |
|                      KSTEP = 2
 | |
|                      DONE = .TRUE.
 | |
|                   ELSE
 | |
| *
 | |
| *                    Pivot not found: set params and repeat
 | |
| *
 | |
|                      P = IMAX
 | |
|                      COLMAX = ROWMAX
 | |
|                      IMAX = JMAX
 | |
| *
 | |
| *                    Copy updated JMAXth (next IMAXth) column to Kth of W
 | |
| *
 | |
|                      CALL CCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
 | |
| *
 | |
|                   END IF
 | |
| *
 | |
| *                 End pivot search loop body
 | |
| *
 | |
|                IF( .NOT. DONE ) GOTO 12
 | |
| *
 | |
|             END IF
 | |
| *
 | |
| *           ============================================================
 | |
| *
 | |
|             KK = K - KSTEP + 1
 | |
| *
 | |
| *           KKW is the column of W which corresponds to column KK of A
 | |
| *
 | |
|             KKW = NB + KK - N
 | |
| *
 | |
|             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
 | |
| *
 | |
| *              Copy non-updated column K to column P
 | |
| *
 | |
|                CALL CCOPY( K-P, A( P+1, K ), 1, A( P, P+1 ), LDA )
 | |
|                CALL CCOPY( P, A( 1, K ), 1, A( 1, P ), 1 )
 | |
| *
 | |
| *              Interchange rows K and P in last N-K+1 columns of A
 | |
| *              and last N-K+2 columns of W
 | |
| *
 | |
|                CALL CSWAP( N-K+1, A( K, K ), LDA, A( P, K ), LDA )
 | |
|                CALL CSWAP( N-KK+1, W( K, KKW ), LDW, W( P, KKW ), LDW )
 | |
|             END IF
 | |
| *
 | |
| *           Updated column KP is already stored in column KKW of W
 | |
| *
 | |
|             IF( KP.NE.KK ) THEN
 | |
| *
 | |
| *              Copy non-updated column KK to column KP
 | |
| *
 | |
|                A( KP, K ) = A( KK, K )
 | |
|                CALL CCOPY( K-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
 | |
|      $                     LDA )
 | |
|                CALL CCOPY( KP, A( 1, KK ), 1, A( 1, KP ), 1 )
 | |
| *
 | |
| *              Interchange rows KK and KP in last N-KK+1 columns
 | |
| *              of A and W
 | |
| *
 | |
|                CALL CSWAP( N-KK+1, A( KK, KK ), LDA, A( KP, KK ), LDA )
 | |
|                CALL CSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
 | |
|      $                     LDW )
 | |
|             END IF
 | |
| *
 | |
|             IF( KSTEP.EQ.1 ) THEN
 | |
| *
 | |
| *              1-by-1 pivot block D(k): column KW of W now holds
 | |
| *
 | |
| *              W(k) = U(k)*D(k)
 | |
| *
 | |
| *              where U(k) is the k-th column of U
 | |
| *
 | |
| *              Store U(k) in column k of A
 | |
| *
 | |
|                CALL CCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
 | |
|                IF( K.GT.1 ) THEN
 | |
|                   IF( CABS1( A( K, K ) ).GE.SFMIN ) THEN
 | |
|                      R1 = CONE / A( K, K )
 | |
|                      CALL CSCAL( K-1, R1, A( 1, K ), 1 )
 | |
|                   ELSE IF( A( K, K ).NE.CZERO ) THEN
 | |
|                      DO 14 II = 1, K - 1
 | |
|                         A( II, K ) = A( II, K ) / A( K, K )
 | |
|    14                CONTINUE
 | |
|                   END IF
 | |
| *
 | |
| *                 Store the superdiagonal element of D in array E
 | |
| *
 | |
|                   E( K ) = CZERO
 | |
| *
 | |
|                END IF
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
| *              2-by-2 pivot block D(k): columns KW and KW-1 of W now
 | |
| *              hold
 | |
| *
 | |
| *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
 | |
| *
 | |
| *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
 | |
| *              of U
 | |
| *
 | |
|                IF( K.GT.2 ) THEN
 | |
| *
 | |
| *                 Store U(k) and U(k-1) in columns k and k-1 of A
 | |
| *
 | |
|                   D12 = W( K-1, KW )
 | |
|                   D11 = W( K, KW ) / D12
 | |
|                   D22 = W( K-1, KW-1 ) / D12
 | |
|                   T = CONE / ( D11*D22-CONE )
 | |
|                   DO 20 J = 1, K - 2
 | |
|                      A( J, K-1 ) = T*( (D11*W( J, KW-1 )-W( J, KW ) ) /
 | |
|      $                             D12 )
 | |
|                      A( J, K ) = T*( ( D22*W( J, KW )-W( J, KW-1 ) ) /
 | |
|      $                           D12 )
 | |
|    20             CONTINUE
 | |
|                END IF
 | |
| *
 | |
| *              Copy diagonal elements of D(K) to A,
 | |
| *              copy superdiagonal element of D(K) to E(K) and
 | |
| *              ZERO out superdiagonal entry of A
 | |
| *
 | |
|                A( K-1, K-1 ) = W( K-1, KW-1 )
 | |
|                A( K-1, K ) = CZERO
 | |
|                A( K, K ) = W( K, KW )
 | |
|                E( K ) = W( K-1, KW )
 | |
|                E( K-1 ) = CZERO
 | |
| *
 | |
|             END IF
 | |
| *
 | |
| *           End column K is nonsingular
 | |
| *
 | |
|          END IF
 | |
| *
 | |
| *        Store details of the interchanges in IPIV
 | |
| *
 | |
|          IF( KSTEP.EQ.1 ) THEN
 | |
|             IPIV( K ) = KP
 | |
|          ELSE
 | |
|             IPIV( K ) = -P
 | |
|             IPIV( K-1 ) = -KP
 | |
|          END IF
 | |
| *
 | |
| *        Decrease K and return to the start of the main loop
 | |
| *
 | |
|          K = K - KSTEP
 | |
|          GO TO 10
 | |
| *
 | |
|    30    CONTINUE
 | |
| *
 | |
| *        Update the upper triangle of A11 (= A(1:k,1:k)) as
 | |
| *
 | |
| *        A11 := A11 - U12*D*U12**T = A11 - U12*W**T
 | |
| *
 | |
| *        computing blocks of NB columns at a time
 | |
| *
 | |
|          DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
 | |
|             JB = MIN( NB, K-J+1 )
 | |
| *
 | |
| *           Update the upper triangle of the diagonal block
 | |
| *
 | |
|             DO 40 JJ = J, J + JB - 1
 | |
|                CALL CGEMV( 'No transpose', JJ-J+1, N-K, -CONE,
 | |
|      $                     A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, CONE,
 | |
|      $                     A( J, JJ ), 1 )
 | |
|    40       CONTINUE
 | |
| *
 | |
| *           Update the rectangular superdiagonal block
 | |
| *
 | |
|             IF( J.GE.2 )
 | |
|      $         CALL CGEMM( 'No transpose', 'Transpose', J-1, JB,
 | |
|      $                     N-K, -CONE, A( 1, K+1 ), LDA, W( J, KW+1 ),
 | |
|      $                     LDW, CONE, A( 1, J ), LDA )
 | |
|    50    CONTINUE
 | |
| *
 | |
| *        Set KB to the number of columns factorized
 | |
| *
 | |
|          KB = N - K
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Factorize the leading columns of A using the lower triangle
 | |
| *        of A and working forwards, and compute the matrix W = L21*D
 | |
| *        for use in updating A22
 | |
| *
 | |
| *        Initialize the unused last entry of the subdiagonal array E.
 | |
| *
 | |
|          E( N ) = CZERO
 | |
| *
 | |
| *        K is the main loop index, increasing from 1 in steps of 1 or 2
 | |
| *
 | |
|          K = 1
 | |
|    70   CONTINUE
 | |
| *
 | |
| *        Exit from loop
 | |
| *
 | |
|          IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
 | |
|      $      GO TO 90
 | |
| *
 | |
|          KSTEP = 1
 | |
|          P = K
 | |
| *
 | |
| *        Copy column K of A to column K of W and update it
 | |
| *
 | |
|          CALL CCOPY( N-K+1, A( K, K ), 1, W( K, K ), 1 )
 | |
|          IF( K.GT.1 )
 | |
|      $      CALL CGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ),
 | |
|      $                  LDA, W( K, 1 ), LDW, CONE, W( K, K ), 1 )
 | |
| *
 | |
| *        Determine rows and columns to be interchanged and whether
 | |
| *        a 1-by-1 or 2-by-2 pivot block will be used
 | |
| *
 | |
|          ABSAKK = CABS1( W( K, K ) )
 | |
| *
 | |
| *        IMAX is the row-index of the largest off-diagonal element in
 | |
| *        column K, and COLMAX is its absolute value.
 | |
| *        Determine both COLMAX and IMAX.
 | |
| *
 | |
|          IF( K.LT.N ) THEN
 | |
|             IMAX = K + ICAMAX( N-K, W( K+1, K ), 1 )
 | |
|             COLMAX = CABS1( W( IMAX, K ) )
 | |
|          ELSE
 | |
|             COLMAX = ZERO
 | |
|          END IF
 | |
| *
 | |
|          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
 | |
| *
 | |
| *           Column K is zero or underflow: set INFO and continue
 | |
| *
 | |
|             IF( INFO.EQ.0 )
 | |
|      $         INFO = K
 | |
|             KP = K
 | |
|             CALL CCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
 | |
| *
 | |
| *           Set E( K ) to zero
 | |
| *
 | |
|             IF( K.LT.N )
 | |
|      $         E( K ) = CZERO
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           ============================================================
 | |
| *
 | |
| *           Test for interchange
 | |
| *
 | |
| *           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX
 | |
| *           (used to handle NaN and Inf)
 | |
| *
 | |
|             IF( .NOT.( ABSAKK.LT.ALPHA*COLMAX ) ) THEN
 | |
| *
 | |
| *              no interchange, use 1-by-1 pivot block
 | |
| *
 | |
|                KP = K
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
|                DONE = .FALSE.
 | |
| *
 | |
| *              Loop until pivot found
 | |
| *
 | |
|    72          CONTINUE
 | |
| *
 | |
| *                 Begin pivot search loop body
 | |
| *
 | |
| *
 | |
| *                 Copy column IMAX to column K+1 of W and update it
 | |
| *
 | |
|                   CALL CCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1)
 | |
|                   CALL CCOPY( N-IMAX+1, A( IMAX, IMAX ), 1,
 | |
|      $                        W( IMAX, K+1 ), 1 )
 | |
|                   IF( K.GT.1 )
 | |
|      $               CALL CGEMV( 'No transpose', N-K+1, K-1, -CONE,
 | |
|      $                           A( K, 1 ), LDA, W( IMAX, 1 ), LDW,
 | |
|      $                           CONE, W( K, K+1 ), 1 )
 | |
| *
 | |
| *                 JMAX is the column-index of the largest off-diagonal
 | |
| *                 element in row IMAX, and ROWMAX is its absolute value.
 | |
| *                 Determine both ROWMAX and JMAX.
 | |
| *
 | |
|                   IF( IMAX.NE.K ) THEN
 | |
|                      JMAX = K - 1 + ICAMAX( IMAX-K, W( K, K+1 ), 1 )
 | |
|                      ROWMAX = CABS1( W( JMAX, K+1 ) )
 | |
|                   ELSE
 | |
|                      ROWMAX = ZERO
 | |
|                   END IF
 | |
| *
 | |
|                   IF( IMAX.LT.N ) THEN
 | |
|                      ITEMP = IMAX + ICAMAX( N-IMAX, W( IMAX+1, K+1 ), 1)
 | |
|                      STEMP = CABS1( W( ITEMP, K+1 ) )
 | |
|                      IF( STEMP.GT.ROWMAX ) THEN
 | |
|                         ROWMAX = STEMP
 | |
|                         JMAX = ITEMP
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
| *                 Equivalent to testing for
 | |
| *                 CABS1( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX
 | |
| *                 (used to handle NaN and Inf)
 | |
| *
 | |
|                   IF( .NOT.( CABS1( W( IMAX, K+1 ) ).LT.ALPHA*ROWMAX ) )
 | |
|      $            THEN
 | |
| *
 | |
| *                    interchange rows and columns K and IMAX,
 | |
| *                    use 1-by-1 pivot block
 | |
| *
 | |
|                      KP = IMAX
 | |
| *
 | |
| *                    copy column K+1 of W to column K of W
 | |
| *
 | |
|                      CALL CCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
 | |
| *
 | |
|                      DONE = .TRUE.
 | |
| *
 | |
| *                 Equivalent to testing for ROWMAX.EQ.COLMAX,
 | |
| *                 (used to handle NaN and Inf)
 | |
| *
 | |
|                   ELSE IF( ( P.EQ.JMAX ) .OR. ( ROWMAX.LE.COLMAX ) )
 | |
|      $            THEN
 | |
| *
 | |
| *                    interchange rows and columns K+1 and IMAX,
 | |
| *                    use 2-by-2 pivot block
 | |
| *
 | |
|                      KP = IMAX
 | |
|                      KSTEP = 2
 | |
|                      DONE = .TRUE.
 | |
|                   ELSE
 | |
| *
 | |
| *                    Pivot not found: set params and repeat
 | |
| *
 | |
|                      P = IMAX
 | |
|                      COLMAX = ROWMAX
 | |
|                      IMAX = JMAX
 | |
| *
 | |
| *                    Copy updated JMAXth (next IMAXth) column to Kth of W
 | |
| *
 | |
|                      CALL CCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
 | |
| *
 | |
|                   END IF
 | |
| *
 | |
| *                 End pivot search loop body
 | |
| *
 | |
|                IF( .NOT. DONE ) GOTO 72
 | |
| *
 | |
|             END IF
 | |
| *
 | |
| *           ============================================================
 | |
| *
 | |
|             KK = K + KSTEP - 1
 | |
| *
 | |
|             IF( ( KSTEP.EQ.2 ) .AND. ( P.NE.K ) ) THEN
 | |
| *
 | |
| *              Copy non-updated column K to column P
 | |
| *
 | |
|                CALL CCOPY( P-K, A( K, K ), 1, A( P, K ), LDA )
 | |
|                CALL CCOPY( N-P+1, A( P, K ), 1, A( P, P ), 1 )
 | |
| *
 | |
| *              Interchange rows K and P in first K columns of A
 | |
| *              and first K+1 columns of W
 | |
| *
 | |
|                CALL CSWAP( K, A( K, 1 ), LDA, A( P, 1 ), LDA )
 | |
|                CALL CSWAP( KK, W( K, 1 ), LDW, W( P, 1 ), LDW )
 | |
|             END IF
 | |
| *
 | |
| *           Updated column KP is already stored in column KK of W
 | |
| *
 | |
|             IF( KP.NE.KK ) THEN
 | |
| *
 | |
| *              Copy non-updated column KK to column KP
 | |
| *
 | |
|                A( KP, K ) = A( KK, K )
 | |
|                CALL CCOPY( KP-K-1, A( K+1, KK ), 1, A( KP, K+1 ), LDA )
 | |
|                CALL CCOPY( N-KP+1, A( KP, KK ), 1, A( KP, KP ), 1 )
 | |
| *
 | |
| *              Interchange rows KK and KP in first KK columns of A and W
 | |
| *
 | |
|                CALL CSWAP( KK, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
 | |
|                CALL CSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
 | |
|             END IF
 | |
| *
 | |
|             IF( KSTEP.EQ.1 ) THEN
 | |
| *
 | |
| *              1-by-1 pivot block D(k): column k of W now holds
 | |
| *
 | |
| *              W(k) = L(k)*D(k)
 | |
| *
 | |
| *              where L(k) is the k-th column of L
 | |
| *
 | |
| *              Store L(k) in column k of A
 | |
| *
 | |
|                CALL CCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
 | |
|                IF( K.LT.N ) THEN
 | |
|                   IF( CABS1( A( K, K ) ).GE.SFMIN ) THEN
 | |
|                      R1 = CONE / A( K, K )
 | |
|                      CALL CSCAL( N-K, R1, A( K+1, K ), 1 )
 | |
|                   ELSE IF( A( K, K ).NE.CZERO ) THEN
 | |
|                      DO 74 II = K + 1, N
 | |
|                         A( II, K ) = A( II, K ) / A( K, K )
 | |
|    74                CONTINUE
 | |
|                   END IF
 | |
| *
 | |
| *                 Store the subdiagonal element of D in array E
 | |
| *
 | |
|                   E( K ) = CZERO
 | |
| *
 | |
|                END IF
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
| *              2-by-2 pivot block D(k): columns k and k+1 of W now hold
 | |
| *
 | |
| *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
 | |
| *
 | |
| *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
 | |
| *              of L
 | |
| *
 | |
|                IF( K.LT.N-1 ) THEN
 | |
| *
 | |
| *                 Store L(k) and L(k+1) in columns k and k+1 of A
 | |
| *
 | |
|                   D21 = W( K+1, K )
 | |
|                   D11 = W( K+1, K+1 ) / D21
 | |
|                   D22 = W( K, K ) / D21
 | |
|                   T = CONE / ( D11*D22-CONE )
 | |
|                   DO 80 J = K + 2, N
 | |
|                      A( J, K ) = T*( ( D11*W( J, K )-W( J, K+1 ) ) /
 | |
|      $                           D21 )
 | |
|                      A( J, K+1 ) = T*( ( D22*W( J, K+1 )-W( J, K ) ) /
 | |
|      $                             D21 )
 | |
|    80             CONTINUE
 | |
|                END IF
 | |
| *
 | |
| *              Copy diagonal elements of D(K) to A,
 | |
| *              copy subdiagonal element of D(K) to E(K) and
 | |
| *              ZERO out subdiagonal entry of A
 | |
| *
 | |
|                A( K, K ) = W( K, K )
 | |
|                A( K+1, K ) = CZERO
 | |
|                A( K+1, K+1 ) = W( K+1, K+1 )
 | |
|                E( K ) = W( K+1, K )
 | |
|                E( K+1 ) = CZERO
 | |
| *
 | |
|             END IF
 | |
| *
 | |
| *           End column K is nonsingular
 | |
| *
 | |
|          END IF
 | |
| *
 | |
| *        Store details of the interchanges in IPIV
 | |
| *
 | |
|          IF( KSTEP.EQ.1 ) THEN
 | |
|             IPIV( K ) = KP
 | |
|          ELSE
 | |
|             IPIV( K ) = -P
 | |
|             IPIV( K+1 ) = -KP
 | |
|          END IF
 | |
| *
 | |
| *        Increase K and return to the start of the main loop
 | |
| *
 | |
|          K = K + KSTEP
 | |
|          GO TO 70
 | |
| *
 | |
|    90    CONTINUE
 | |
| *
 | |
| *        Update the lower triangle of A22 (= A(k:n,k:n)) as
 | |
| *
 | |
| *        A22 := A22 - L21*D*L21**T = A22 - L21*W**T
 | |
| *
 | |
| *        computing blocks of NB columns at a time
 | |
| *
 | |
|          DO 110 J = K, N, NB
 | |
|             JB = MIN( NB, N-J+1 )
 | |
| *
 | |
| *           Update the lower triangle of the diagonal block
 | |
| *
 | |
|             DO 100 JJ = J, J + JB - 1
 | |
|                CALL CGEMV( 'No transpose', J+JB-JJ, K-1, -CONE,
 | |
|      $                     A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, CONE,
 | |
|      $                     A( JJ, JJ ), 1 )
 | |
|   100       CONTINUE
 | |
| *
 | |
| *           Update the rectangular subdiagonal block
 | |
| *
 | |
|             IF( J+JB.LE.N )
 | |
|      $         CALL CGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
 | |
|      $                     K-1, -CONE, A( J+JB, 1 ), LDA, W( J, 1 ),
 | |
|      $                     LDW, CONE, A( J+JB, J ), LDA )
 | |
|   110    CONTINUE
 | |
| *
 | |
| *        Set KB to the number of columns factorized
 | |
| *
 | |
|          KB = K - 1
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CLASYF_RK
 | |
| *
 | |
|       END
 |