396 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			396 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CLAGS2
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CLAGS2 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clags2.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clags2.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clags2.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV,
 | |
| *                          SNV, CSQ, SNQ )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       LOGICAL            UPPER
 | |
| *       REAL               A1, A3, B1, B3, CSQ, CSU, CSV
 | |
| *       COMPLEX            A2, B2, SNQ, SNU, SNV
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CLAGS2 computes 2-by-2 unitary matrices U, V and Q, such
 | |
| *> that if ( UPPER ) then
 | |
| *>
 | |
| *>           U**H *A*Q = U**H *( A1 A2 )*Q = ( x  0  )
 | |
| *>                             ( 0  A3 )     ( x  x  )
 | |
| *> and
 | |
| *>           V**H*B*Q = V**H *( B1 B2 )*Q = ( x  0  )
 | |
| *>                            ( 0  B3 )     ( x  x  )
 | |
| *>
 | |
| *> or if ( .NOT.UPPER ) then
 | |
| *>
 | |
| *>           U**H *A*Q = U**H *( A1 0  )*Q = ( x  x  )
 | |
| *>                             ( A2 A3 )     ( 0  x  )
 | |
| *> and
 | |
| *>           V**H *B*Q = V**H *( B1 0  )*Q = ( x  x  )
 | |
| *>                             ( B2 B3 )     ( 0  x  )
 | |
| *> where
 | |
| *>
 | |
| *>   U = (   CSU    SNU ), V = (  CSV    SNV ),
 | |
| *>       ( -SNU**H  CSU )      ( -SNV**H CSV )
 | |
| *>
 | |
| *>   Q = (   CSQ    SNQ )
 | |
| *>       ( -SNQ**H  CSQ )
 | |
| *>
 | |
| *> The rows of the transformed A and B are parallel. Moreover, if the
 | |
| *> input 2-by-2 matrix A is not zero, then the transformed (1,1) entry
 | |
| *> of A is not zero. If the input matrices A and B are both not zero,
 | |
| *> then the transformed (2,2) element of B is not zero, except when the
 | |
| *> first rows of input A and B are parallel and the second rows are
 | |
| *> zero.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPPER
 | |
| *> \verbatim
 | |
| *>          UPPER is LOGICAL
 | |
| *>          = .TRUE.: the input matrices A and B are upper triangular.
 | |
| *>          = .FALSE.: the input matrices A and B are lower triangular.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A1
 | |
| *> \verbatim
 | |
| *>          A1 is REAL
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A2
 | |
| *> \verbatim
 | |
| *>          A2 is COMPLEX
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A3
 | |
| *> \verbatim
 | |
| *>          A3 is REAL
 | |
| *>          On entry, A1, A2 and A3 are elements of the input 2-by-2
 | |
| *>          upper (lower) triangular matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B1
 | |
| *> \verbatim
 | |
| *>          B1 is REAL
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B2
 | |
| *> \verbatim
 | |
| *>          B2 is COMPLEX
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B3
 | |
| *> \verbatim
 | |
| *>          B3 is REAL
 | |
| *>          On entry, B1, B2 and B3 are elements of the input 2-by-2
 | |
| *>          upper (lower) triangular matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] CSU
 | |
| *> \verbatim
 | |
| *>          CSU is REAL
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SNU
 | |
| *> \verbatim
 | |
| *>          SNU is COMPLEX
 | |
| *>          The desired unitary matrix U.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] CSV
 | |
| *> \verbatim
 | |
| *>          CSV is REAL
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SNV
 | |
| *> \verbatim
 | |
| *>          SNV is COMPLEX
 | |
| *>          The desired unitary matrix V.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] CSQ
 | |
| *> \verbatim
 | |
| *>          CSQ is REAL
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SNQ
 | |
| *> \verbatim
 | |
| *>          SNQ is COMPLEX
 | |
| *>          The desired unitary matrix Q.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup complexOTHERauxiliary
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CLAGS2( UPPER, A1, A2, A3, B1, B2, B3, CSU, SNU, CSV,
 | |
|      $                   SNV, CSQ, SNQ )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       LOGICAL            UPPER
 | |
|       REAL               A1, A3, B1, B3, CSQ, CSU, CSV
 | |
|       COMPLEX            A2, B2, SNQ, SNU, SNV
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       REAL               A, AUA11, AUA12, AUA21, AUA22, AVB11, AVB12,
 | |
|      $                   AVB21, AVB22, CSL, CSR, D, FB, FC, S1, S2, SNL,
 | |
|      $                   SNR, UA11R, UA22R, VB11R, VB22R
 | |
|       COMPLEX            B, C, D1, R, T, UA11, UA12, UA21, UA22, VB11,
 | |
|      $                   VB12, VB21, VB22
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CLARTG, SLASV2
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, AIMAG, CMPLX, CONJG, REAL
 | |
| *     ..
 | |
| *     .. Statement Functions ..
 | |
|       REAL               ABS1
 | |
| *     ..
 | |
| *     .. Statement Function definitions ..
 | |
|       ABS1( T ) = ABS( REAL( T ) ) + ABS( AIMAG( T ) )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       IF( UPPER ) THEN
 | |
| *
 | |
| *        Input matrices A and B are upper triangular matrices
 | |
| *
 | |
| *        Form matrix C = A*adj(B) = ( a b )
 | |
| *                                   ( 0 d )
 | |
| *
 | |
|          A = A1*B3
 | |
|          D = A3*B1
 | |
|          B = A2*B1 - A1*B2
 | |
|          FB = ABS( B )
 | |
| *
 | |
| *        Transform complex 2-by-2 matrix C to real matrix by unitary
 | |
| *        diagonal matrix diag(1,D1).
 | |
| *
 | |
|          D1 = ONE
 | |
|          IF( FB.NE.ZERO )
 | |
|      $      D1 = B / FB
 | |
| *
 | |
| *        The SVD of real 2 by 2 triangular C
 | |
| *
 | |
| *         ( CSL -SNL )*( A B )*(  CSR  SNR ) = ( R 0 )
 | |
| *         ( SNL  CSL ) ( 0 D ) ( -SNR  CSR )   ( 0 T )
 | |
| *
 | |
|          CALL SLASV2( A, FB, D, S1, S2, SNR, CSR, SNL, CSL )
 | |
| *
 | |
|          IF( ABS( CSL ).GE.ABS( SNL ) .OR. ABS( CSR ).GE.ABS( SNR ) )
 | |
|      $        THEN
 | |
| *
 | |
| *           Compute the (1,1) and (1,2) elements of U**H *A and V**H *B,
 | |
| *           and (1,2) element of |U|**H *|A| and |V|**H *|B|.
 | |
| *
 | |
|             UA11R = CSL*A1
 | |
|             UA12 = CSL*A2 + D1*SNL*A3
 | |
| *
 | |
|             VB11R = CSR*B1
 | |
|             VB12 = CSR*B2 + D1*SNR*B3
 | |
| *
 | |
|             AUA12 = ABS( CSL )*ABS1( A2 ) + ABS( SNL )*ABS( A3 )
 | |
|             AVB12 = ABS( CSR )*ABS1( B2 ) + ABS( SNR )*ABS( B3 )
 | |
| *
 | |
| *           zero (1,2) elements of U**H *A and V**H *B
 | |
| *
 | |
|             IF( ( ABS( UA11R )+ABS1( UA12 ) ).EQ.ZERO ) THEN
 | |
|                CALL CLARTG( -CMPLX( VB11R ), CONJG( VB12 ), CSQ, SNQ,
 | |
|      $                      R )
 | |
|             ELSE IF( ( ABS( VB11R )+ABS1( VB12 ) ).EQ.ZERO ) THEN
 | |
|                CALL CLARTG( -CMPLX( UA11R ), CONJG( UA12 ), CSQ, SNQ,
 | |
|      $                      R )
 | |
|             ELSE IF( AUA12 / ( ABS( UA11R )+ABS1( UA12 ) ).LE.AVB12 /
 | |
|      $               ( ABS( VB11R )+ABS1( VB12 ) ) ) THEN
 | |
|                CALL CLARTG( -CMPLX( UA11R ), CONJG( UA12 ), CSQ, SNQ,
 | |
|      $                      R )
 | |
|             ELSE
 | |
|                CALL CLARTG( -CMPLX( VB11R ), CONJG( VB12 ), CSQ, SNQ,
 | |
|      $                      R )
 | |
|             END IF
 | |
| *
 | |
|             CSU = CSL
 | |
|             SNU = -D1*SNL
 | |
|             CSV = CSR
 | |
|             SNV = -D1*SNR
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           Compute the (2,1) and (2,2) elements of U**H *A and V**H *B,
 | |
| *           and (2,2) element of |U|**H *|A| and |V|**H *|B|.
 | |
| *
 | |
|             UA21 = -CONJG( D1 )*SNL*A1
 | |
|             UA22 = -CONJG( D1 )*SNL*A2 + CSL*A3
 | |
| *
 | |
|             VB21 = -CONJG( D1 )*SNR*B1
 | |
|             VB22 = -CONJG( D1 )*SNR*B2 + CSR*B3
 | |
| *
 | |
|             AUA22 = ABS( SNL )*ABS1( A2 ) + ABS( CSL )*ABS( A3 )
 | |
|             AVB22 = ABS( SNR )*ABS1( B2 ) + ABS( CSR )*ABS( B3 )
 | |
| *
 | |
| *           zero (2,2) elements of U**H *A and V**H *B, and then swap.
 | |
| *
 | |
|             IF( ( ABS1( UA21 )+ABS1( UA22 ) ).EQ.ZERO ) THEN
 | |
|                CALL CLARTG( -CONJG( VB21 ), CONJG( VB22 ), CSQ, SNQ, R )
 | |
|             ELSE IF( ( ABS1( VB21 )+ABS( VB22 ) ).EQ.ZERO ) THEN
 | |
|                CALL CLARTG( -CONJG( UA21 ), CONJG( UA22 ), CSQ, SNQ, R )
 | |
|             ELSE IF( AUA22 / ( ABS1( UA21 )+ABS1( UA22 ) ).LE.AVB22 /
 | |
|      $               ( ABS1( VB21 )+ABS1( VB22 ) ) ) THEN
 | |
|                CALL CLARTG( -CONJG( UA21 ), CONJG( UA22 ), CSQ, SNQ, R )
 | |
|             ELSE
 | |
|                CALL CLARTG( -CONJG( VB21 ), CONJG( VB22 ), CSQ, SNQ, R )
 | |
|             END IF
 | |
| *
 | |
|             CSU = SNL
 | |
|             SNU = D1*CSL
 | |
|             CSV = SNR
 | |
|             SNV = D1*CSR
 | |
| *
 | |
|          END IF
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Input matrices A and B are lower triangular matrices
 | |
| *
 | |
| *        Form matrix C = A*adj(B) = ( a 0 )
 | |
| *                                   ( c d )
 | |
| *
 | |
|          A = A1*B3
 | |
|          D = A3*B1
 | |
|          C = A2*B3 - A3*B2
 | |
|          FC = ABS( C )
 | |
| *
 | |
| *        Transform complex 2-by-2 matrix C to real matrix by unitary
 | |
| *        diagonal matrix diag(d1,1).
 | |
| *
 | |
|          D1 = ONE
 | |
|          IF( FC.NE.ZERO )
 | |
|      $      D1 = C / FC
 | |
| *
 | |
| *        The SVD of real 2 by 2 triangular C
 | |
| *
 | |
| *         ( CSL -SNL )*( A 0 )*(  CSR  SNR ) = ( R 0 )
 | |
| *         ( SNL  CSL ) ( C D ) ( -SNR  CSR )   ( 0 T )
 | |
| *
 | |
|          CALL SLASV2( A, FC, D, S1, S2, SNR, CSR, SNL, CSL )
 | |
| *
 | |
|          IF( ABS( CSR ).GE.ABS( SNR ) .OR. ABS( CSL ).GE.ABS( SNL ) )
 | |
|      $        THEN
 | |
| *
 | |
| *           Compute the (2,1) and (2,2) elements of U**H *A and V**H *B,
 | |
| *           and (2,1) element of |U|**H *|A| and |V|**H *|B|.
 | |
| *
 | |
|             UA21 = -D1*SNR*A1 + CSR*A2
 | |
|             UA22R = CSR*A3
 | |
| *
 | |
|             VB21 = -D1*SNL*B1 + CSL*B2
 | |
|             VB22R = CSL*B3
 | |
| *
 | |
|             AUA21 = ABS( SNR )*ABS( A1 ) + ABS( CSR )*ABS1( A2 )
 | |
|             AVB21 = ABS( SNL )*ABS( B1 ) + ABS( CSL )*ABS1( B2 )
 | |
| *
 | |
| *           zero (2,1) elements of U**H *A and V**H *B.
 | |
| *
 | |
|             IF( ( ABS1( UA21 )+ABS( UA22R ) ).EQ.ZERO ) THEN
 | |
|                CALL CLARTG( CMPLX( VB22R ), VB21, CSQ, SNQ, R )
 | |
|             ELSE IF( ( ABS1( VB21 )+ABS( VB22R ) ).EQ.ZERO ) THEN
 | |
|                CALL CLARTG( CMPLX( UA22R ), UA21, CSQ, SNQ, R )
 | |
|             ELSE IF( AUA21 / ( ABS1( UA21 )+ABS( UA22R ) ).LE.AVB21 /
 | |
|      $               ( ABS1( VB21 )+ABS( VB22R ) ) ) THEN
 | |
|                CALL CLARTG( CMPLX( UA22R ), UA21, CSQ, SNQ, R )
 | |
|             ELSE
 | |
|                CALL CLARTG( CMPLX( VB22R ), VB21, CSQ, SNQ, R )
 | |
|             END IF
 | |
| *
 | |
|             CSU = CSR
 | |
|             SNU = -CONJG( D1 )*SNR
 | |
|             CSV = CSL
 | |
|             SNV = -CONJG( D1 )*SNL
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           Compute the (1,1) and (1,2) elements of U**H *A and V**H *B,
 | |
| *           and (1,1) element of |U|**H *|A| and |V|**H *|B|.
 | |
| *
 | |
|             UA11 = CSR*A1 + CONJG( D1 )*SNR*A2
 | |
|             UA12 = CONJG( D1 )*SNR*A3
 | |
| *
 | |
|             VB11 = CSL*B1 + CONJG( D1 )*SNL*B2
 | |
|             VB12 = CONJG( D1 )*SNL*B3
 | |
| *
 | |
|             AUA11 = ABS( CSR )*ABS( A1 ) + ABS( SNR )*ABS1( A2 )
 | |
|             AVB11 = ABS( CSL )*ABS( B1 ) + ABS( SNL )*ABS1( B2 )
 | |
| *
 | |
| *           zero (1,1) elements of U**H *A and V**H *B, and then swap.
 | |
| *
 | |
|             IF( ( ABS1( UA11 )+ABS1( UA12 ) ).EQ.ZERO ) THEN
 | |
|                CALL CLARTG( VB12, VB11, CSQ, SNQ, R )
 | |
|             ELSE IF( ( ABS1( VB11 )+ABS1( VB12 ) ).EQ.ZERO ) THEN
 | |
|                CALL CLARTG( UA12, UA11, CSQ, SNQ, R )
 | |
|             ELSE IF( AUA11 / ( ABS1( UA11 )+ABS1( UA12 ) ).LE.AVB11 /
 | |
|      $               ( ABS1( VB11 )+ABS1( VB12 ) ) ) THEN
 | |
|                CALL CLARTG( UA12, UA11, CSQ, SNQ, R )
 | |
|             ELSE
 | |
|                CALL CLARTG( VB12, VB11, CSQ, SNQ, R )
 | |
|             END IF
 | |
| *
 | |
|             CSU = SNR
 | |
|             SNU = CONJG( D1 )*CSR
 | |
|             CSV = SNL
 | |
|             SNV = CONJG( D1 )*CSL
 | |
| *
 | |
|          END IF
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CLAGS2
 | |
| *
 | |
|       END
 |