222 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			222 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CLAESY computes the eigenvalues and eigenvectors of a 2-by-2 complex symmetric matrix.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CLAESY + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claesy.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claesy.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claesy.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CLAESY( A, B, C, RT1, RT2, EVSCAL, CS1, SN1 )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       COMPLEX            A, B, C, CS1, EVSCAL, RT1, RT2, SN1
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CLAESY computes the eigendecomposition of a 2-by-2 symmetric matrix
 | |
| *>    ( ( A, B );( B, C ) )
 | |
| *> provided the norm of the matrix of eigenvectors is larger than
 | |
| *> some threshold value.
 | |
| *>
 | |
| *> RT1 is the eigenvalue of larger absolute value, and RT2 of
 | |
| *> smaller absolute value.  If the eigenvectors are computed, then
 | |
| *> on return ( CS1, SN1 ) is the unit eigenvector for RT1, hence
 | |
| *>
 | |
| *> [  CS1     SN1   ] . [ A  B ] . [ CS1    -SN1   ] = [ RT1  0  ]
 | |
| *> [ -SN1     CS1   ]   [ B  C ]   [ SN1     CS1   ]   [  0  RT2 ]
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX
 | |
| *>          The ( 1, 1 ) element of input matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX
 | |
| *>          The ( 1, 2 ) element of input matrix.  The ( 2, 1 ) element
 | |
| *>          is also given by B, since the 2-by-2 matrix is symmetric.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] C
 | |
| *> \verbatim
 | |
| *>          C is COMPLEX
 | |
| *>          The ( 2, 2 ) element of input matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RT1
 | |
| *> \verbatim
 | |
| *>          RT1 is COMPLEX
 | |
| *>          The eigenvalue of larger modulus.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RT2
 | |
| *> \verbatim
 | |
| *>          RT2 is COMPLEX
 | |
| *>          The eigenvalue of smaller modulus.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] EVSCAL
 | |
| *> \verbatim
 | |
| *>          EVSCAL is COMPLEX
 | |
| *>          The complex value by which the eigenvector matrix was scaled
 | |
| *>          to make it orthonormal.  If EVSCAL is zero, the eigenvectors
 | |
| *>          were not computed.  This means one of two things:  the 2-by-2
 | |
| *>          matrix could not be diagonalized, or the norm of the matrix
 | |
| *>          of eigenvectors before scaling was larger than the threshold
 | |
| *>          value THRESH (set below).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] CS1
 | |
| *> \verbatim
 | |
| *>          CS1 is COMPLEX
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SN1
 | |
| *> \verbatim
 | |
| *>          SN1 is COMPLEX
 | |
| *>          If EVSCAL .NE. 0,  ( CS1, SN1 ) is the unit right eigenvector
 | |
| *>          for RT1.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup complexSYauxiliary
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CLAESY( A, B, C, RT1, RT2, EVSCAL, CS1, SN1 )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       COMPLEX            A, B, C, CS1, EVSCAL, RT1, RT2, SN1
 | |
| *     ..
 | |
| *
 | |
| * =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO
 | |
|       PARAMETER          ( ZERO = 0.0E0 )
 | |
|       REAL               ONE
 | |
|       PARAMETER          ( ONE = 1.0E0 )
 | |
|       COMPLEX            CONE
 | |
|       PARAMETER          ( CONE = ( 1.0E0, 0.0E0 ) )
 | |
|       REAL               HALF
 | |
|       PARAMETER          ( HALF = 0.5E0 )
 | |
|       REAL               THRESH
 | |
|       PARAMETER          ( THRESH = 0.1E0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       REAL               BABS, EVNORM, TABS, Z
 | |
|       COMPLEX            S, T, TMP
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *
 | |
| *     Special case:  The matrix is actually diagonal.
 | |
| *     To avoid divide by zero later, we treat this case separately.
 | |
| *
 | |
|       IF( ABS( B ).EQ.ZERO ) THEN
 | |
|          RT1 = A
 | |
|          RT2 = C
 | |
|          IF( ABS( RT1 ).LT.ABS( RT2 ) ) THEN
 | |
|             TMP = RT1
 | |
|             RT1 = RT2
 | |
|             RT2 = TMP
 | |
|             CS1 = ZERO
 | |
|             SN1 = ONE
 | |
|          ELSE
 | |
|             CS1 = ONE
 | |
|             SN1 = ZERO
 | |
|          END IF
 | |
|       ELSE
 | |
| *
 | |
| *        Compute the eigenvalues and eigenvectors.
 | |
| *        The characteristic equation is
 | |
| *           lambda **2 - (A+C) lambda + (A*C - B*B)
 | |
| *        and we solve it using the quadratic formula.
 | |
| *
 | |
|          S = ( A+C )*HALF
 | |
|          T = ( A-C )*HALF
 | |
| *
 | |
| *        Take the square root carefully to avoid over/under flow.
 | |
| *
 | |
|          BABS = ABS( B )
 | |
|          TABS = ABS( T )
 | |
|          Z = MAX( BABS, TABS )
 | |
|          IF( Z.GT.ZERO )
 | |
|      $      T = Z*SQRT( ( T / Z )**2+( B / Z )**2 )
 | |
| *
 | |
| *        Compute the two eigenvalues.  RT1 and RT2 are exchanged
 | |
| *        if necessary so that RT1 will have the greater magnitude.
 | |
| *
 | |
|          RT1 = S + T
 | |
|          RT2 = S - T
 | |
|          IF( ABS( RT1 ).LT.ABS( RT2 ) ) THEN
 | |
|             TMP = RT1
 | |
|             RT1 = RT2
 | |
|             RT2 = TMP
 | |
|          END IF
 | |
| *
 | |
| *        Choose CS1 = 1 and SN1 to satisfy the first equation, then
 | |
| *        scale the components of this eigenvector so that the matrix
 | |
| *        of eigenvectors X satisfies  X * X**T = I .  (No scaling is
 | |
| *        done if the norm of the eigenvalue matrix is less than THRESH.)
 | |
| *
 | |
|          SN1 = ( RT1-A ) / B
 | |
|          TABS = ABS( SN1 )
 | |
|          IF( TABS.GT.ONE ) THEN
 | |
|             T = TABS*SQRT( ( ONE / TABS )**2+( SN1 / TABS )**2 )
 | |
|          ELSE
 | |
|             T = SQRT( CONE+SN1*SN1 )
 | |
|          END IF
 | |
|          EVNORM = ABS( T )
 | |
|          IF( EVNORM.GE.THRESH ) THEN
 | |
|             EVSCAL = CONE / T
 | |
|             CS1 = EVSCAL
 | |
|             SN1 = SN1*EVSCAL
 | |
|          ELSE
 | |
|             EVSCAL = ZERO
 | |
|          END IF
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     End of CLAESY
 | |
| *
 | |
|       END
 |