283 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			283 lines
		
	
	
		
			8.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CHPGV
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CHPGV + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chpgv.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chpgv.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chpgv.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CHPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
 | |
| *                         RWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBZ, UPLO
 | |
| *       INTEGER            INFO, ITYPE, LDZ, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               RWORK( * ), W( * )
 | |
| *       COMPLEX            AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CHPGV computes all the eigenvalues and, optionally, the eigenvectors
 | |
| *> of a complex generalized Hermitian-definite eigenproblem, of the form
 | |
| *> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.
 | |
| *> Here A and B are assumed to be Hermitian, stored in packed format,
 | |
| *> and B is also positive definite.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] ITYPE
 | |
| *> \verbatim
 | |
| *>          ITYPE is INTEGER
 | |
| *>          Specifies the problem type to be solved:
 | |
| *>          = 1:  A*x = (lambda)*B*x
 | |
| *>          = 2:  A*B*x = (lambda)*x
 | |
| *>          = 3:  B*A*x = (lambda)*x
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBZ
 | |
| *> \verbatim
 | |
| *>          JOBZ is CHARACTER*1
 | |
| *>          = 'N':  Compute eigenvalues only;
 | |
| *>          = 'V':  Compute eigenvalues and eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  Upper triangles of A and B are stored;
 | |
| *>          = 'L':  Lower triangles of A and B are stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrices A and B.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] AP
 | |
| *> \verbatim
 | |
| *>          AP is COMPLEX array, dimension (N*(N+1)/2)
 | |
| *>          On entry, the upper or lower triangle of the Hermitian matrix
 | |
| *>          A, packed columnwise in a linear array.  The j-th column of A
 | |
| *>          is stored in the array AP as follows:
 | |
| *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 | |
| *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
 | |
| *>
 | |
| *>          On exit, the contents of AP are destroyed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] BP
 | |
| *> \verbatim
 | |
| *>          BP is COMPLEX array, dimension (N*(N+1)/2)
 | |
| *>          On entry, the upper or lower triangle of the Hermitian matrix
 | |
| *>          B, packed columnwise in a linear array.  The j-th column of B
 | |
| *>          is stored in the array BP as follows:
 | |
| *>          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
 | |
| *>          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
 | |
| *>
 | |
| *>          On exit, the triangular factor U or L from the Cholesky
 | |
| *>          factorization B = U**H*U or B = L*L**H, in the same storage
 | |
| *>          format as B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] W
 | |
| *> \verbatim
 | |
| *>          W is REAL array, dimension (N)
 | |
| *>          If INFO = 0, the eigenvalues in ascending order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Z
 | |
| *> \verbatim
 | |
| *>          Z is COMPLEX array, dimension (LDZ, N)
 | |
| *>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
 | |
| *>          eigenvectors.  The eigenvectors are normalized as follows:
 | |
| *>          if ITYPE = 1 or 2, Z**H*B*Z = I;
 | |
| *>          if ITYPE = 3, Z**H*inv(B)*Z = I.
 | |
| *>          If JOBZ = 'N', then Z is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>          The leading dimension of the array Z.  LDZ >= 1, and if
 | |
| *>          JOBZ = 'V', LDZ >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (max(1, 2*N-1))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (max(1, 3*N-2))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  CPPTRF or CHPEV returned an error code:
 | |
| *>             <= N:  if INFO = i, CHPEV failed to converge;
 | |
| *>                    i off-diagonal elements of an intermediate
 | |
| *>                    tridiagonal form did not convergeto zero;
 | |
| *>             > N:   if INFO = N + i, for 1 <= i <= n, then the leading
 | |
| *>                    minor of order i of B is not positive definite.
 | |
| *>                    The factorization of B could not be completed and
 | |
| *>                    no eigenvalues or eigenvectors were computed.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup complexOTHEReigen
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CHPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
 | |
|      $                  RWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBZ, UPLO
 | |
|       INTEGER            INFO, ITYPE, LDZ, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               RWORK( * ), W( * )
 | |
|       COMPLEX            AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            UPPER, WANTZ
 | |
|       CHARACTER          TRANS
 | |
|       INTEGER            J, NEIG
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CHPEV, CHPGST, CPPTRF, CTPMV, CTPSV, XERBLA
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       WANTZ = LSAME( JOBZ, 'V' )
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
 | |
|          INFO = -9
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CHPGV ', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Form a Cholesky factorization of B.
 | |
| *
 | |
|       CALL CPPTRF( UPLO, N, BP, INFO )
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          INFO = N + INFO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Transform problem to standard eigenvalue problem and solve.
 | |
| *
 | |
|       CALL CHPGST( ITYPE, UPLO, N, AP, BP, INFO )
 | |
|       CALL CHPEV( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, RWORK, INFO )
 | |
| *
 | |
|       IF( WANTZ ) THEN
 | |
| *
 | |
| *        Backtransform eigenvectors to the original problem.
 | |
| *
 | |
|          NEIG = N
 | |
|          IF( INFO.GT.0 )
 | |
|      $      NEIG = INFO - 1
 | |
|          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
 | |
| *
 | |
| *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
 | |
| *           backtransform eigenvectors: x = inv(L)**H*y or inv(U)*y
 | |
| *
 | |
|             IF( UPPER ) THEN
 | |
|                TRANS = 'N'
 | |
|             ELSE
 | |
|                TRANS = 'C'
 | |
|             END IF
 | |
| *
 | |
|             DO 10 J = 1, NEIG
 | |
|                CALL CTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
 | |
|      $                     1 )
 | |
|    10       CONTINUE
 | |
| *
 | |
|          ELSE IF( ITYPE.EQ.3 ) THEN
 | |
| *
 | |
| *           For B*A*x=(lambda)*x;
 | |
| *           backtransform eigenvectors: x = L*y or U**H*y
 | |
| *
 | |
|             IF( UPPER ) THEN
 | |
|                TRANS = 'C'
 | |
|             ELSE
 | |
|                TRANS = 'N'
 | |
|             END IF
 | |
| *
 | |
|             DO 20 J = 1, NEIG
 | |
|                CALL CTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
 | |
|      $                     1 )
 | |
|    20       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     End of CHPGV
 | |
| *
 | |
|       END
 |