574 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			574 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CGBBRD
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CGBBRD + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgbbrd.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgbbrd.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgbbrd.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q,
 | |
| *                          LDQ, PT, LDPT, C, LDC, WORK, RWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          VECT
 | |
| *       INTEGER            INFO, KL, KU, LDAB, LDC, LDPT, LDQ, M, N, NCC
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               D( * ), E( * ), RWORK( * )
 | |
| *       COMPLEX            AB( LDAB, * ), C( LDC, * ), PT( LDPT, * ),
 | |
| *      $                   Q( LDQ, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CGBBRD reduces a complex general m-by-n band matrix A to real upper
 | |
| *> bidiagonal form B by a unitary transformation: Q**H * A * P = B.
 | |
| *>
 | |
| *> The routine computes B, and optionally forms Q or P**H, or computes
 | |
| *> Q**H*C for a given matrix C.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] VECT
 | |
| *> \verbatim
 | |
| *>          VECT is CHARACTER*1
 | |
| *>          Specifies whether or not the matrices Q and P**H are to be
 | |
| *>          formed.
 | |
| *>          = 'N': do not form Q or P**H;
 | |
| *>          = 'Q': form Q only;
 | |
| *>          = 'P': form P**H only;
 | |
| *>          = 'B': form both.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NCC
 | |
| *> \verbatim
 | |
| *>          NCC is INTEGER
 | |
| *>          The number of columns of the matrix C.  NCC >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KL
 | |
| *> \verbatim
 | |
| *>          KL is INTEGER
 | |
| *>          The number of subdiagonals of the matrix A. KL >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KU
 | |
| *> \verbatim
 | |
| *>          KU is INTEGER
 | |
| *>          The number of superdiagonals of the matrix A. KU >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] AB
 | |
| *> \verbatim
 | |
| *>          AB is COMPLEX array, dimension (LDAB,N)
 | |
| *>          On entry, the m-by-n band matrix A, stored in rows 1 to
 | |
| *>          KL+KU+1. The j-th column of A is stored in the j-th column of
 | |
| *>          the array AB as follows:
 | |
| *>          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl).
 | |
| *>          On exit, A is overwritten by values generated during the
 | |
| *>          reduction.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAB
 | |
| *> \verbatim
 | |
| *>          LDAB is INTEGER
 | |
| *>          The leading dimension of the array A. LDAB >= KL+KU+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension (min(M,N))
 | |
| *>          The diagonal elements of the bidiagonal matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] E
 | |
| *> \verbatim
 | |
| *>          E is REAL array, dimension (min(M,N)-1)
 | |
| *>          The superdiagonal elements of the bidiagonal matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Q
 | |
| *> \verbatim
 | |
| *>          Q is COMPLEX array, dimension (LDQ,M)
 | |
| *>          If VECT = 'Q' or 'B', the m-by-m unitary matrix Q.
 | |
| *>          If VECT = 'N' or 'P', the array Q is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDQ
 | |
| *> \verbatim
 | |
| *>          LDQ is INTEGER
 | |
| *>          The leading dimension of the array Q.
 | |
| *>          LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] PT
 | |
| *> \verbatim
 | |
| *>          PT is COMPLEX array, dimension (LDPT,N)
 | |
| *>          If VECT = 'P' or 'B', the n-by-n unitary matrix P'.
 | |
| *>          If VECT = 'N' or 'Q', the array PT is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDPT
 | |
| *> \verbatim
 | |
| *>          LDPT is INTEGER
 | |
| *>          The leading dimension of the array PT.
 | |
| *>          LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] C
 | |
| *> \verbatim
 | |
| *>          C is COMPLEX array, dimension (LDC,NCC)
 | |
| *>          On entry, an m-by-ncc matrix C.
 | |
| *>          On exit, C is overwritten by Q**H*C.
 | |
| *>          C is not referenced if NCC = 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDC
 | |
| *> \verbatim
 | |
| *>          LDC is INTEGER
 | |
| *>          The leading dimension of the array C.
 | |
| *>          LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (max(M,N))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (max(M,N))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit.
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup complexGBcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q,
 | |
|      $                   LDQ, PT, LDPT, C, LDC, WORK, RWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          VECT
 | |
|       INTEGER            INFO, KL, KU, LDAB, LDC, LDPT, LDQ, M, N, NCC
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               D( * ), E( * ), RWORK( * )
 | |
|       COMPLEX            AB( LDAB, * ), C( LDC, * ), PT( LDPT, * ),
 | |
|      $                   Q( LDQ, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO
 | |
|       PARAMETER          ( ZERO = 0.0E+0 )
 | |
|       COMPLEX            CZERO, CONE
 | |
|       PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
 | |
|      $                   CONE = ( 1.0E+0, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            WANTB, WANTC, WANTPT, WANTQ
 | |
|       INTEGER            I, INCA, J, J1, J2, KB, KB1, KK, KLM, KLU1,
 | |
|      $                   KUN, L, MINMN, ML, ML0, MU, MU0, NR, NRT
 | |
|       REAL               ABST, RC
 | |
|       COMPLEX            RA, RB, RS, T
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CLARGV, CLARTG, CLARTV, CLASET, CROT, CSCAL,
 | |
|      $                   XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, CONJG, MAX, MIN
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters
 | |
| *
 | |
|       WANTB = LSAME( VECT, 'B' )
 | |
|       WANTQ = LSAME( VECT, 'Q' ) .OR. WANTB
 | |
|       WANTPT = LSAME( VECT, 'P' ) .OR. WANTB
 | |
|       WANTC = NCC.GT.0
 | |
|       KLU1 = KL + KU + 1
 | |
|       INFO = 0
 | |
|       IF( .NOT.WANTQ .AND. .NOT.WANTPT .AND. .NOT.LSAME( VECT, 'N' ) )
 | |
|      $     THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( M.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( NCC.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( KL.LT.0 ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( KU.LT.0 ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDAB.LT.KLU1 ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( LDQ.LT.1 .OR. WANTQ .AND. LDQ.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -12
 | |
|       ELSE IF( LDPT.LT.1 .OR. WANTPT .AND. LDPT.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -14
 | |
|       ELSE IF( LDC.LT.1 .OR. WANTC .AND. LDC.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -16
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CGBBRD', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Initialize Q and P**H to the unit matrix, if needed
 | |
| *
 | |
|       IF( WANTQ )
 | |
|      $   CALL CLASET( 'Full', M, M, CZERO, CONE, Q, LDQ )
 | |
|       IF( WANTPT )
 | |
|      $   CALL CLASET( 'Full', N, N, CZERO, CONE, PT, LDPT )
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( M.EQ.0 .OR. N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       MINMN = MIN( M, N )
 | |
| *
 | |
|       IF( KL+KU.GT.1 ) THEN
 | |
| *
 | |
| *        Reduce to upper bidiagonal form if KU > 0; if KU = 0, reduce
 | |
| *        first to lower bidiagonal form and then transform to upper
 | |
| *        bidiagonal
 | |
| *
 | |
|          IF( KU.GT.0 ) THEN
 | |
|             ML0 = 1
 | |
|             MU0 = 2
 | |
|          ELSE
 | |
|             ML0 = 2
 | |
|             MU0 = 1
 | |
|          END IF
 | |
| *
 | |
| *        Wherever possible, plane rotations are generated and applied in
 | |
| *        vector operations of length NR over the index set J1:J2:KLU1.
 | |
| *
 | |
| *        The complex sines of the plane rotations are stored in WORK,
 | |
| *        and the real cosines in RWORK.
 | |
| *
 | |
|          KLM = MIN( M-1, KL )
 | |
|          KUN = MIN( N-1, KU )
 | |
|          KB = KLM + KUN
 | |
|          KB1 = KB + 1
 | |
|          INCA = KB1*LDAB
 | |
|          NR = 0
 | |
|          J1 = KLM + 2
 | |
|          J2 = 1 - KUN
 | |
| *
 | |
|          DO 90 I = 1, MINMN
 | |
| *
 | |
| *           Reduce i-th column and i-th row of matrix to bidiagonal form
 | |
| *
 | |
|             ML = KLM + 1
 | |
|             MU = KUN + 1
 | |
|             DO 80 KK = 1, KB
 | |
|                J1 = J1 + KB
 | |
|                J2 = J2 + KB
 | |
| *
 | |
| *              generate plane rotations to annihilate nonzero elements
 | |
| *              which have been created below the band
 | |
| *
 | |
|                IF( NR.GT.0 )
 | |
|      $            CALL CLARGV( NR, AB( KLU1, J1-KLM-1 ), INCA,
 | |
|      $                         WORK( J1 ), KB1, RWORK( J1 ), KB1 )
 | |
| *
 | |
| *              apply plane rotations from the left
 | |
| *
 | |
|                DO 10 L = 1, KB
 | |
|                   IF( J2-KLM+L-1.GT.N ) THEN
 | |
|                      NRT = NR - 1
 | |
|                   ELSE
 | |
|                      NRT = NR
 | |
|                   END IF
 | |
|                   IF( NRT.GT.0 )
 | |
|      $               CALL CLARTV( NRT, AB( KLU1-L, J1-KLM+L-1 ), INCA,
 | |
|      $                            AB( KLU1-L+1, J1-KLM+L-1 ), INCA,
 | |
|      $                            RWORK( J1 ), WORK( J1 ), KB1 )
 | |
|    10          CONTINUE
 | |
| *
 | |
|                IF( ML.GT.ML0 ) THEN
 | |
|                   IF( ML.LE.M-I+1 ) THEN
 | |
| *
 | |
| *                    generate plane rotation to annihilate a(i+ml-1,i)
 | |
| *                    within the band, and apply rotation from the left
 | |
| *
 | |
|                      CALL CLARTG( AB( KU+ML-1, I ), AB( KU+ML, I ),
 | |
|      $                            RWORK( I+ML-1 ), WORK( I+ML-1 ), RA )
 | |
|                      AB( KU+ML-1, I ) = RA
 | |
|                      IF( I.LT.N )
 | |
|      $                  CALL CROT( MIN( KU+ML-2, N-I ),
 | |
|      $                             AB( KU+ML-2, I+1 ), LDAB-1,
 | |
|      $                             AB( KU+ML-1, I+1 ), LDAB-1,
 | |
|      $                             RWORK( I+ML-1 ), WORK( I+ML-1 ) )
 | |
|                   END IF
 | |
|                   NR = NR + 1
 | |
|                   J1 = J1 - KB1
 | |
|                END IF
 | |
| *
 | |
|                IF( WANTQ ) THEN
 | |
| *
 | |
| *                 accumulate product of plane rotations in Q
 | |
| *
 | |
|                   DO 20 J = J1, J2, KB1
 | |
|                      CALL CROT( M, Q( 1, J-1 ), 1, Q( 1, J ), 1,
 | |
|      $                          RWORK( J ), CONJG( WORK( J ) ) )
 | |
|    20             CONTINUE
 | |
|                END IF
 | |
| *
 | |
|                IF( WANTC ) THEN
 | |
| *
 | |
| *                 apply plane rotations to C
 | |
| *
 | |
|                   DO 30 J = J1, J2, KB1
 | |
|                      CALL CROT( NCC, C( J-1, 1 ), LDC, C( J, 1 ), LDC,
 | |
|      $                          RWORK( J ), WORK( J ) )
 | |
|    30             CONTINUE
 | |
|                END IF
 | |
| *
 | |
|                IF( J2+KUN.GT.N ) THEN
 | |
| *
 | |
| *                 adjust J2 to keep within the bounds of the matrix
 | |
| *
 | |
|                   NR = NR - 1
 | |
|                   J2 = J2 - KB1
 | |
|                END IF
 | |
| *
 | |
|                DO 40 J = J1, J2, KB1
 | |
| *
 | |
| *                 create nonzero element a(j-1,j+ku) above the band
 | |
| *                 and store it in WORK(n+1:2*n)
 | |
| *
 | |
|                   WORK( J+KUN ) = WORK( J )*AB( 1, J+KUN )
 | |
|                   AB( 1, J+KUN ) = RWORK( J )*AB( 1, J+KUN )
 | |
|    40          CONTINUE
 | |
| *
 | |
| *              generate plane rotations to annihilate nonzero elements
 | |
| *              which have been generated above the band
 | |
| *
 | |
|                IF( NR.GT.0 )
 | |
|      $            CALL CLARGV( NR, AB( 1, J1+KUN-1 ), INCA,
 | |
|      $                         WORK( J1+KUN ), KB1, RWORK( J1+KUN ),
 | |
|      $                         KB1 )
 | |
| *
 | |
| *              apply plane rotations from the right
 | |
| *
 | |
|                DO 50 L = 1, KB
 | |
|                   IF( J2+L-1.GT.M ) THEN
 | |
|                      NRT = NR - 1
 | |
|                   ELSE
 | |
|                      NRT = NR
 | |
|                   END IF
 | |
|                   IF( NRT.GT.0 )
 | |
|      $               CALL CLARTV( NRT, AB( L+1, J1+KUN-1 ), INCA,
 | |
|      $                            AB( L, J1+KUN ), INCA,
 | |
|      $                            RWORK( J1+KUN ), WORK( J1+KUN ), KB1 )
 | |
|    50          CONTINUE
 | |
| *
 | |
|                IF( ML.EQ.ML0 .AND. MU.GT.MU0 ) THEN
 | |
|                   IF( MU.LE.N-I+1 ) THEN
 | |
| *
 | |
| *                    generate plane rotation to annihilate a(i,i+mu-1)
 | |
| *                    within the band, and apply rotation from the right
 | |
| *
 | |
|                      CALL CLARTG( AB( KU-MU+3, I+MU-2 ),
 | |
|      $                            AB( KU-MU+2, I+MU-1 ),
 | |
|      $                            RWORK( I+MU-1 ), WORK( I+MU-1 ), RA )
 | |
|                      AB( KU-MU+3, I+MU-2 ) = RA
 | |
|                      CALL CROT( MIN( KL+MU-2, M-I ),
 | |
|      $                          AB( KU-MU+4, I+MU-2 ), 1,
 | |
|      $                          AB( KU-MU+3, I+MU-1 ), 1,
 | |
|      $                          RWORK( I+MU-1 ), WORK( I+MU-1 ) )
 | |
|                   END IF
 | |
|                   NR = NR + 1
 | |
|                   J1 = J1 - KB1
 | |
|                END IF
 | |
| *
 | |
|                IF( WANTPT ) THEN
 | |
| *
 | |
| *                 accumulate product of plane rotations in P**H
 | |
| *
 | |
|                   DO 60 J = J1, J2, KB1
 | |
|                      CALL CROT( N, PT( J+KUN-1, 1 ), LDPT,
 | |
|      $                          PT( J+KUN, 1 ), LDPT, RWORK( J+KUN ),
 | |
|      $                          CONJG( WORK( J+KUN ) ) )
 | |
|    60             CONTINUE
 | |
|                END IF
 | |
| *
 | |
|                IF( J2+KB.GT.M ) THEN
 | |
| *
 | |
| *                 adjust J2 to keep within the bounds of the matrix
 | |
| *
 | |
|                   NR = NR - 1
 | |
|                   J2 = J2 - KB1
 | |
|                END IF
 | |
| *
 | |
|                DO 70 J = J1, J2, KB1
 | |
| *
 | |
| *                 create nonzero element a(j+kl+ku,j+ku-1) below the
 | |
| *                 band and store it in WORK(1:n)
 | |
| *
 | |
|                   WORK( J+KB ) = WORK( J+KUN )*AB( KLU1, J+KUN )
 | |
|                   AB( KLU1, J+KUN ) = RWORK( J+KUN )*AB( KLU1, J+KUN )
 | |
|    70          CONTINUE
 | |
| *
 | |
|                IF( ML.GT.ML0 ) THEN
 | |
|                   ML = ML - 1
 | |
|                ELSE
 | |
|                   MU = MU - 1
 | |
|                END IF
 | |
|    80       CONTINUE
 | |
|    90    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       IF( KU.EQ.0 .AND. KL.GT.0 ) THEN
 | |
| *
 | |
| *        A has been reduced to complex lower bidiagonal form
 | |
| *
 | |
| *        Transform lower bidiagonal form to upper bidiagonal by applying
 | |
| *        plane rotations from the left, overwriting superdiagonal
 | |
| *        elements on subdiagonal elements
 | |
| *
 | |
|          DO 100 I = 1, MIN( M-1, N )
 | |
|             CALL CLARTG( AB( 1, I ), AB( 2, I ), RC, RS, RA )
 | |
|             AB( 1, I ) = RA
 | |
|             IF( I.LT.N ) THEN
 | |
|                AB( 2, I ) = RS*AB( 1, I+1 )
 | |
|                AB( 1, I+1 ) = RC*AB( 1, I+1 )
 | |
|             END IF
 | |
|             IF( WANTQ )
 | |
|      $         CALL CROT( M, Q( 1, I ), 1, Q( 1, I+1 ), 1, RC,
 | |
|      $                    CONJG( RS ) )
 | |
|             IF( WANTC )
 | |
|      $         CALL CROT( NCC, C( I, 1 ), LDC, C( I+1, 1 ), LDC, RC,
 | |
|      $                    RS )
 | |
|   100    CONTINUE
 | |
|       ELSE
 | |
| *
 | |
| *        A has been reduced to complex upper bidiagonal form or is
 | |
| *        diagonal
 | |
| *
 | |
|          IF( KU.GT.0 .AND. M.LT.N ) THEN
 | |
| *
 | |
| *           Annihilate a(m,m+1) by applying plane rotations from the
 | |
| *           right
 | |
| *
 | |
|             RB = AB( KU, M+1 )
 | |
|             DO 110 I = M, 1, -1
 | |
|                CALL CLARTG( AB( KU+1, I ), RB, RC, RS, RA )
 | |
|                AB( KU+1, I ) = RA
 | |
|                IF( I.GT.1 ) THEN
 | |
|                   RB = -CONJG( RS )*AB( KU, I )
 | |
|                   AB( KU, I ) = RC*AB( KU, I )
 | |
|                END IF
 | |
|                IF( WANTPT )
 | |
|      $            CALL CROT( N, PT( I, 1 ), LDPT, PT( M+1, 1 ), LDPT,
 | |
|      $                       RC, CONJG( RS ) )
 | |
|   110       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Make diagonal and superdiagonal elements real, storing them in D
 | |
| *     and E
 | |
| *
 | |
|       T = AB( KU+1, 1 )
 | |
|       DO 120 I = 1, MINMN
 | |
|          ABST = ABS( T )
 | |
|          D( I ) = ABST
 | |
|          IF( ABST.NE.ZERO ) THEN
 | |
|             T = T / ABST
 | |
|          ELSE
 | |
|             T = CONE
 | |
|          END IF
 | |
|          IF( WANTQ )
 | |
|      $      CALL CSCAL( M, T, Q( 1, I ), 1 )
 | |
|          IF( WANTC )
 | |
|      $      CALL CSCAL( NCC, CONJG( T ), C( I, 1 ), LDC )
 | |
|          IF( I.LT.MINMN ) THEN
 | |
|             IF( KU.EQ.0 .AND. KL.EQ.0 ) THEN
 | |
|                E( I ) = ZERO
 | |
|                T = AB( 1, I+1 )
 | |
|             ELSE
 | |
|                IF( KU.EQ.0 ) THEN
 | |
|                   T = AB( 2, I )*CONJG( T )
 | |
|                ELSE
 | |
|                   T = AB( KU, I+1 )*CONJG( T )
 | |
|                END IF
 | |
|                ABST = ABS( T )
 | |
|                E( I ) = ABST
 | |
|                IF( ABST.NE.ZERO ) THEN
 | |
|                   T = T / ABST
 | |
|                ELSE
 | |
|                   T = CONE
 | |
|                END IF
 | |
|                IF( WANTPT )
 | |
|      $            CALL CSCAL( N, T, PT( I+1, 1 ), LDPT )
 | |
|                T = AB( KU+1, I+1 )*CONJG( T )
 | |
|             END IF
 | |
|          END IF
 | |
|   120 CONTINUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of CGBBRD
 | |
| *
 | |
|       END
 |