656 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			656 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZUNCSD
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZUNCSD + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zuncsd.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zuncsd.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zuncsd.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       RECURSIVE SUBROUTINE ZUNCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS,
 | |
| *                                    SIGNS, M, P, Q, X11, LDX11, X12,
 | |
| *                                    LDX12, X21, LDX21, X22, LDX22, THETA,
 | |
| *                                    U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
 | |
| *                                    LDV2T, WORK, LWORK, RWORK, LRWORK,
 | |
| *                                    IWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBU1, JOBU2, JOBV1T, JOBV2T, SIGNS, TRANS
 | |
| *       INTEGER            INFO, LDU1, LDU2, LDV1T, LDV2T, LDX11, LDX12,
 | |
| *      $                   LDX21, LDX22, LRWORK, LWORK, M, P, Q
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IWORK( * )
 | |
| *       DOUBLE PRECISION   THETA( * )
 | |
| *       DOUBLE PRECISION   RWORK( * )
 | |
| *       COMPLEX*16         U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
 | |
| *      $                   V2T( LDV2T, * ), WORK( * ), X11( LDX11, * ),
 | |
| *      $                   X12( LDX12, * ), X21( LDX21, * ), X22( LDX22,
 | |
| *      $                   * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZUNCSD computes the CS decomposition of an M-by-M partitioned
 | |
| *> unitary matrix X:
 | |
| *>
 | |
| *>                                 [  I  0  0 |  0  0  0 ]
 | |
| *>                                 [  0  C  0 |  0 -S  0 ]
 | |
| *>     [ X11 | X12 ]   [ U1 |    ] [  0  0  0 |  0  0 -I ] [ V1 |    ]**H
 | |
| *> X = [-----------] = [---------] [---------------------] [---------]   .
 | |
| *>     [ X21 | X22 ]   [    | U2 ] [  0  0  0 |  I  0  0 ] [    | V2 ]
 | |
| *>                                 [  0  S  0 |  0  C  0 ]
 | |
| *>                                 [  0  0  I |  0  0  0 ]
 | |
| *>
 | |
| *> X11 is P-by-Q. The unitary matrices U1, U2, V1, and V2 are P-by-P,
 | |
| *> (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are
 | |
| *> R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in
 | |
| *> which R = MIN(P,M-P,Q,M-Q).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBU1
 | |
| *> \verbatim
 | |
| *>          JOBU1 is CHARACTER
 | |
| *>          = 'Y':      U1 is computed;
 | |
| *>          otherwise:  U1 is not computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBU2
 | |
| *> \verbatim
 | |
| *>          JOBU2 is CHARACTER
 | |
| *>          = 'Y':      U2 is computed;
 | |
| *>          otherwise:  U2 is not computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBV1T
 | |
| *> \verbatim
 | |
| *>          JOBV1T is CHARACTER
 | |
| *>          = 'Y':      V1T is computed;
 | |
| *>          otherwise:  V1T is not computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBV2T
 | |
| *> \verbatim
 | |
| *>          JOBV2T is CHARACTER
 | |
| *>          = 'Y':      V2T is computed;
 | |
| *>          otherwise:  V2T is not computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER
 | |
| *>          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
 | |
| *>                      order;
 | |
| *>          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
 | |
| *>                      major order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SIGNS
 | |
| *> \verbatim
 | |
| *>          SIGNS is CHARACTER
 | |
| *>          = 'O':      The lower-left block is made nonpositive (the
 | |
| *>                      "other" convention);
 | |
| *>          otherwise:  The upper-right block is made nonpositive (the
 | |
| *>                      "default" convention).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows and columns in X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] P
 | |
| *> \verbatim
 | |
| *>          P is INTEGER
 | |
| *>          The number of rows in X11 and X12. 0 <= P <= M.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] Q
 | |
| *> \verbatim
 | |
| *>          Q is INTEGER
 | |
| *>          The number of columns in X11 and X21. 0 <= Q <= M.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] X11
 | |
| *> \verbatim
 | |
| *>          X11 is COMPLEX*16 array, dimension (LDX11,Q)
 | |
| *>          On entry, part of the unitary matrix whose CSD is desired.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDX11
 | |
| *> \verbatim
 | |
| *>          LDX11 is INTEGER
 | |
| *>          The leading dimension of X11. LDX11 >= MAX(1,P).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] X12
 | |
| *> \verbatim
 | |
| *>          X12 is COMPLEX*16 array, dimension (LDX12,M-Q)
 | |
| *>          On entry, part of the unitary matrix whose CSD is desired.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDX12
 | |
| *> \verbatim
 | |
| *>          LDX12 is INTEGER
 | |
| *>          The leading dimension of X12. LDX12 >= MAX(1,P).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] X21
 | |
| *> \verbatim
 | |
| *>          X21 is COMPLEX*16 array, dimension (LDX21,Q)
 | |
| *>          On entry, part of the unitary matrix whose CSD is desired.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDX21
 | |
| *> \verbatim
 | |
| *>          LDX21 is INTEGER
 | |
| *>          The leading dimension of X11. LDX21 >= MAX(1,M-P).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] X22
 | |
| *> \verbatim
 | |
| *>          X22 is COMPLEX*16 array, dimension (LDX22,M-Q)
 | |
| *>          On entry, part of the unitary matrix whose CSD is desired.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDX22
 | |
| *> \verbatim
 | |
| *>          LDX22 is INTEGER
 | |
| *>          The leading dimension of X11. LDX22 >= MAX(1,M-P).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] THETA
 | |
| *> \verbatim
 | |
| *>          THETA is DOUBLE PRECISION array, dimension (R), in which R =
 | |
| *>          MIN(P,M-P,Q,M-Q).
 | |
| *>          C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
 | |
| *>          S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] U1
 | |
| *> \verbatim
 | |
| *>          U1 is COMPLEX*16 array, dimension (LDU1,P)
 | |
| *>          If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU1
 | |
| *> \verbatim
 | |
| *>          LDU1 is INTEGER
 | |
| *>          The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
 | |
| *>          MAX(1,P).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] U2
 | |
| *> \verbatim
 | |
| *>          U2 is COMPLEX*16 array, dimension (LDU2,M-P)
 | |
| *>          If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary
 | |
| *>          matrix U2.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU2
 | |
| *> \verbatim
 | |
| *>          LDU2 is INTEGER
 | |
| *>          The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
 | |
| *>          MAX(1,M-P).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] V1T
 | |
| *> \verbatim
 | |
| *>          V1T is COMPLEX*16 array, dimension (LDV1T,Q)
 | |
| *>          If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary
 | |
| *>          matrix V1**H.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDV1T
 | |
| *> \verbatim
 | |
| *>          LDV1T is INTEGER
 | |
| *>          The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
 | |
| *>          MAX(1,Q).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] V2T
 | |
| *> \verbatim
 | |
| *>          V2T is COMPLEX*16 array, dimension (LDV2T,M-Q)
 | |
| *>          If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) unitary
 | |
| *>          matrix V2**H.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDV2T
 | |
| *> \verbatim
 | |
| *>          LDV2T is INTEGER
 | |
| *>          The leading dimension of V2T. If JOBV2T = 'Y', LDV2T >=
 | |
| *>          MAX(1,M-Q).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the work array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array, dimension MAX(1,LRWORK)
 | |
| *>          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
 | |
| *>          If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1),
 | |
| *>          ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
 | |
| *>          define the matrix in intermediate bidiagonal-block form
 | |
| *>          remaining after nonconvergence. INFO specifies the number
 | |
| *>          of nonzero PHI's.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LRWORK
 | |
| *> \verbatim
 | |
| *>          LRWORK is INTEGER
 | |
| *>          The dimension of the array RWORK.
 | |
| *>
 | |
| *>          If LRWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the RWORK array, returns
 | |
| *>          this value as the first entry of the work array, and no error
 | |
| *>          message related to LRWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit.
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>          > 0:  ZBBCSD did not converge. See the description of RWORK
 | |
| *>                above for details.
 | |
| *> \endverbatim
 | |
| *
 | |
| *> \par References:
 | |
| *  ================
 | |
| *>
 | |
| *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
 | |
| *>      Algorithms, 50(1):33-65, 2009.
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complex16OTHERcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       RECURSIVE SUBROUTINE ZUNCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS,
 | |
|      $                             SIGNS, M, P, Q, X11, LDX11, X12,
 | |
|      $                             LDX12, X21, LDX21, X22, LDX22, THETA,
 | |
|      $                             U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
 | |
|      $                             LDV2T, WORK, LWORK, RWORK, LRWORK,
 | |
|      $                             IWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBU1, JOBU2, JOBV1T, JOBV2T, SIGNS, TRANS
 | |
|       INTEGER            INFO, LDU1, LDU2, LDV1T, LDV2T, LDX11, LDX12,
 | |
|      $                   LDX21, LDX22, LRWORK, LWORK, M, P, Q
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IWORK( * )
 | |
|       DOUBLE PRECISION   THETA( * )
 | |
|       DOUBLE PRECISION   RWORK( * )
 | |
|       COMPLEX*16         U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
 | |
|      $                   V2T( LDV2T, * ), WORK( * ), X11( LDX11, * ),
 | |
|      $                   X12( LDX12, * ), X21( LDX21, * ), X22( LDX22,
 | |
|      $                   * )
 | |
| *     ..
 | |
| *
 | |
| *  ===================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX*16         ONE, ZERO
 | |
|       PARAMETER          ( ONE = (1.0D0,0.0D0),
 | |
|      $                     ZERO = (0.0D0,0.0D0) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       CHARACTER          TRANST, SIGNST
 | |
|       INTEGER            CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
 | |
|      $                   IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
 | |
|      $                   IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
 | |
|      $                   ITAUQ2, J, LBBCSDWORK, LBBCSDWORKMIN,
 | |
|      $                   LBBCSDWORKOPT, LORBDBWORK, LORBDBWORKMIN,
 | |
|      $                   LORBDBWORKOPT, LORGLQWORK, LORGLQWORKMIN,
 | |
|      $                   LORGLQWORKOPT, LORGQRWORK, LORGQRWORKMIN,
 | |
|      $                   LORGQRWORKOPT, LWORKMIN, LWORKOPT, P1, Q1
 | |
|       LOGICAL            COLMAJOR, DEFAULTSIGNS, LQUERY, WANTU1, WANTU2,
 | |
|      $                   WANTV1T, WANTV2T
 | |
|       INTEGER            LRWORKMIN, LRWORKOPT
 | |
|       LOGICAL            LRQUERY
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA, ZBBCSD, ZLACPY, ZLAPMR, ZLAPMT,
 | |
|      $                   ZUNBDB, ZUNGLQ, ZUNGQR
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. Intrinsic Functions
 | |
|       INTRINSIC          INT, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test input arguments
 | |
| *
 | |
|       INFO = 0
 | |
|       WANTU1 = LSAME( JOBU1, 'Y' )
 | |
|       WANTU2 = LSAME( JOBU2, 'Y' )
 | |
|       WANTV1T = LSAME( JOBV1T, 'Y' )
 | |
|       WANTV2T = LSAME( JOBV2T, 'Y' )
 | |
|       COLMAJOR = .NOT. LSAME( TRANS, 'T' )
 | |
|       DEFAULTSIGNS = .NOT. LSAME( SIGNS, 'O' )
 | |
|       LQUERY = LWORK .EQ. -1
 | |
|       LRQUERY = LRWORK .EQ. -1
 | |
|       IF( M .LT. 0 ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
 | |
|          INFO = -9
 | |
|       ELSE IF ( COLMAJOR .AND.  LDX11 .LT. MAX( 1, P ) ) THEN
 | |
|         INFO = -11
 | |
|       ELSE IF (.NOT. COLMAJOR .AND. LDX11 .LT. MAX( 1, Q ) ) THEN
 | |
|         INFO = -11
 | |
|       ELSE IF (COLMAJOR .AND. LDX12 .LT. MAX( 1, P ) ) THEN
 | |
|         INFO = -13
 | |
|       ELSE IF (.NOT. COLMAJOR .AND. LDX12 .LT. MAX( 1, M-Q ) ) THEN
 | |
|         INFO = -13
 | |
|       ELSE IF (COLMAJOR .AND. LDX21 .LT. MAX( 1, M-P ) ) THEN
 | |
|         INFO = -15
 | |
|       ELSE IF (.NOT. COLMAJOR .AND. LDX21 .LT. MAX( 1, Q ) ) THEN
 | |
|         INFO = -15
 | |
|       ELSE IF (COLMAJOR .AND. LDX22 .LT. MAX( 1, M-P ) ) THEN
 | |
|         INFO = -17
 | |
|       ELSE IF (.NOT. COLMAJOR .AND. LDX22 .LT. MAX( 1, M-Q ) ) THEN
 | |
|         INFO = -17
 | |
|       ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
 | |
|          INFO = -20
 | |
|       ELSE IF( WANTU2 .AND. LDU2 .LT. M-P ) THEN
 | |
|          INFO = -22
 | |
|       ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
 | |
|          INFO = -24
 | |
|       ELSE IF( WANTV2T .AND. LDV2T .LT. M-Q ) THEN
 | |
|          INFO = -26
 | |
|       END IF
 | |
| *
 | |
| *     Work with transpose if convenient
 | |
| *
 | |
|       IF( INFO .EQ. 0 .AND. MIN( P, M-P ) .LT. MIN( Q, M-Q ) ) THEN
 | |
|          IF( COLMAJOR ) THEN
 | |
|             TRANST = 'T'
 | |
|          ELSE
 | |
|             TRANST = 'N'
 | |
|          END IF
 | |
|          IF( DEFAULTSIGNS ) THEN
 | |
|             SIGNST = 'O'
 | |
|          ELSE
 | |
|             SIGNST = 'D'
 | |
|          END IF
 | |
|          CALL ZUNCSD( JOBV1T, JOBV2T, JOBU1, JOBU2, TRANST, SIGNST, M,
 | |
|      $                Q, P, X11, LDX11, X21, LDX21, X12, LDX12, X22,
 | |
|      $                LDX22, THETA, V1T, LDV1T, V2T, LDV2T, U1, LDU1,
 | |
|      $                U2, LDU2, WORK, LWORK, RWORK, LRWORK, IWORK,
 | |
|      $                INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Work with permutation [ 0 I; I 0 ] * X * [ 0 I; I 0 ] if
 | |
| *     convenient
 | |
| *
 | |
|       IF( INFO .EQ. 0 .AND. M-Q .LT. Q ) THEN
 | |
|          IF( DEFAULTSIGNS ) THEN
 | |
|             SIGNST = 'O'
 | |
|          ELSE
 | |
|             SIGNST = 'D'
 | |
|          END IF
 | |
|          CALL ZUNCSD( JOBU2, JOBU1, JOBV2T, JOBV1T, TRANS, SIGNST, M,
 | |
|      $                M-P, M-Q, X22, LDX22, X21, LDX21, X12, LDX12, X11,
 | |
|      $                LDX11, THETA, U2, LDU2, U1, LDU1, V2T, LDV2T, V1T,
 | |
|      $                LDV1T, WORK, LWORK, RWORK, LRWORK, IWORK, INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Compute workspace
 | |
| *
 | |
|       IF( INFO .EQ. 0 ) THEN
 | |
| *
 | |
| *        Real workspace
 | |
| *
 | |
|          IPHI = 2
 | |
|          IB11D = IPHI + MAX( 1, Q - 1 )
 | |
|          IB11E = IB11D + MAX( 1, Q )
 | |
|          IB12D = IB11E + MAX( 1, Q - 1 )
 | |
|          IB12E = IB12D + MAX( 1, Q )
 | |
|          IB21D = IB12E + MAX( 1, Q - 1 )
 | |
|          IB21E = IB21D + MAX( 1, Q )
 | |
|          IB22D = IB21E + MAX( 1, Q - 1 )
 | |
|          IB22E = IB22D + MAX( 1, Q )
 | |
|          IBBCSD = IB22E + MAX( 1, Q - 1 )
 | |
|          CALL ZBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,
 | |
|      $                THETA, THETA, U1, LDU1, U2, LDU2, V1T, LDV1T,
 | |
|      $                V2T, LDV2T, THETA, THETA, THETA, THETA, THETA,
 | |
|      $                THETA, THETA, THETA, RWORK, -1, CHILDINFO )
 | |
|          LBBCSDWORKOPT = INT( RWORK(1) )
 | |
|          LBBCSDWORKMIN = LBBCSDWORKOPT
 | |
|          LRWORKOPT = IBBCSD + LBBCSDWORKOPT - 1
 | |
|          LRWORKMIN = IBBCSD + LBBCSDWORKMIN - 1
 | |
|          RWORK(1) = LRWORKOPT
 | |
| *
 | |
| *        Complex workspace
 | |
| *
 | |
|          ITAUP1 = 2
 | |
|          ITAUP2 = ITAUP1 + MAX( 1, P )
 | |
|          ITAUQ1 = ITAUP2 + MAX( 1, M - P )
 | |
|          ITAUQ2 = ITAUQ1 + MAX( 1, Q )
 | |
|          IORGQR = ITAUQ2 + MAX( 1, M - Q )
 | |
|          CALL ZUNGQR( M-Q, M-Q, M-Q, U1, MAX(1,M-Q), U1, WORK, -1,
 | |
|      $                CHILDINFO )
 | |
|          LORGQRWORKOPT = INT( WORK(1) )
 | |
|          LORGQRWORKMIN = MAX( 1, M - Q )
 | |
|          IORGLQ = ITAUQ2 + MAX( 1, M - Q )
 | |
|          CALL ZUNGLQ( M-Q, M-Q, M-Q, U1, MAX(1,M-Q), U1, WORK, -1,
 | |
|      $                CHILDINFO )
 | |
|          LORGLQWORKOPT = INT( WORK(1) )
 | |
|          LORGLQWORKMIN = MAX( 1, M - Q )
 | |
|          IORBDB = ITAUQ2 + MAX( 1, M - Q )
 | |
|          CALL ZUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12,
 | |
|      $                X21, LDX21, X22, LDX22, THETA, THETA, U1, U2,
 | |
|      $                V1T, V2T, WORK, -1, CHILDINFO )
 | |
|          LORBDBWORKOPT = INT( WORK(1) )
 | |
|          LORBDBWORKMIN = LORBDBWORKOPT
 | |
|          LWORKOPT = MAX( IORGQR + LORGQRWORKOPT, IORGLQ + LORGLQWORKOPT,
 | |
|      $              IORBDB + LORBDBWORKOPT ) - 1
 | |
|          LWORKMIN = MAX( IORGQR + LORGQRWORKMIN, IORGLQ + LORGLQWORKMIN,
 | |
|      $              IORBDB + LORBDBWORKMIN ) - 1
 | |
|          WORK(1) = MAX(LWORKOPT,LWORKMIN)
 | |
| *
 | |
|          IF( LWORK .LT. LWORKMIN
 | |
|      $       .AND. .NOT. ( LQUERY .OR. LRQUERY ) ) THEN
 | |
|             INFO = -22
 | |
|          ELSE IF( LRWORK .LT. LRWORKMIN
 | |
|      $            .AND. .NOT. ( LQUERY .OR. LRQUERY ) ) THEN
 | |
|             INFO = -24
 | |
|          ELSE
 | |
|             LORGQRWORK = LWORK - IORGQR + 1
 | |
|             LORGLQWORK = LWORK - IORGLQ + 1
 | |
|             LORBDBWORK = LWORK - IORBDB + 1
 | |
|             LBBCSDWORK = LRWORK - IBBCSD + 1
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Abort if any illegal arguments
 | |
| *
 | |
|       IF( INFO .NE. 0 ) THEN
 | |
|          CALL XERBLA( 'ZUNCSD', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY .OR. LRQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Transform to bidiagonal block form
 | |
| *
 | |
|       CALL ZUNBDB( TRANS, SIGNS, M, P, Q, X11, LDX11, X12, LDX12, X21,
 | |
|      $             LDX21, X22, LDX22, THETA, RWORK(IPHI), WORK(ITAUP1),
 | |
|      $             WORK(ITAUP2), WORK(ITAUQ1), WORK(ITAUQ2),
 | |
|      $             WORK(IORBDB), LORBDBWORK, CHILDINFO )
 | |
| *
 | |
| *     Accumulate Householder reflectors
 | |
| *
 | |
|       IF( COLMAJOR ) THEN
 | |
|          IF( WANTU1 .AND. P .GT. 0 ) THEN
 | |
|             CALL ZLACPY( 'L', P, Q, X11, LDX11, U1, LDU1 )
 | |
|             CALL ZUNGQR( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGQR),
 | |
|      $                   LORGQRWORK, INFO)
 | |
|          END IF
 | |
|          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
 | |
|             CALL ZLACPY( 'L', M-P, Q, X21, LDX21, U2, LDU2 )
 | |
|             CALL ZUNGQR( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
 | |
|      $                   WORK(IORGQR), LORGQRWORK, INFO )
 | |
|          END IF
 | |
|          IF( WANTV1T .AND. Q .GT. 0 ) THEN
 | |
|             CALL ZLACPY( 'U', Q-1, Q-1, X11(1,2), LDX11, V1T(2,2),
 | |
|      $                   LDV1T )
 | |
|             V1T(1, 1) = ONE
 | |
|             DO J = 2, Q
 | |
|                V1T(1,J) = ZERO
 | |
|                V1T(J,1) = ZERO
 | |
|             END DO
 | |
|             CALL ZUNGLQ( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
 | |
|      $                   WORK(IORGLQ), LORGLQWORK, INFO )
 | |
|          END IF
 | |
|          IF( WANTV2T .AND. M-Q .GT. 0 ) THEN
 | |
|             CALL ZLACPY( 'U', P, M-Q, X12, LDX12, V2T, LDV2T )
 | |
|             IF( M-P .GT. Q) THEN
 | |
|                CALL ZLACPY( 'U', M-P-Q, M-P-Q, X22(Q+1,P+1), LDX22,
 | |
|      $                      V2T(P+1,P+1), LDV2T )
 | |
|             END IF
 | |
|             IF( M .GT. Q ) THEN
 | |
|                CALL ZUNGLQ( M-Q, M-Q, M-Q, V2T, LDV2T, WORK(ITAUQ2),
 | |
|      $                      WORK(IORGLQ), LORGLQWORK, INFO )
 | |
|             END IF
 | |
|          END IF
 | |
|       ELSE
 | |
|          IF( WANTU1 .AND. P .GT. 0 ) THEN
 | |
|             CALL ZLACPY( 'U', Q, P, X11, LDX11, U1, LDU1 )
 | |
|             CALL ZUNGLQ( P, P, Q, U1, LDU1, WORK(ITAUP1), WORK(IORGLQ),
 | |
|      $                   LORGLQWORK, INFO)
 | |
|          END IF
 | |
|          IF( WANTU2 .AND. M-P .GT. 0 ) THEN
 | |
|             CALL ZLACPY( 'U', Q, M-P, X21, LDX21, U2, LDU2 )
 | |
|             CALL ZUNGLQ( M-P, M-P, Q, U2, LDU2, WORK(ITAUP2),
 | |
|      $                   WORK(IORGLQ), LORGLQWORK, INFO )
 | |
|          END IF
 | |
|          IF( WANTV1T .AND. Q .GT. 0 ) THEN
 | |
|             CALL ZLACPY( 'L', Q-1, Q-1, X11(2,1), LDX11, V1T(2,2),
 | |
|      $                   LDV1T )
 | |
|             V1T(1, 1) = ONE
 | |
|             DO J = 2, Q
 | |
|                V1T(1,J) = ZERO
 | |
|                V1T(J,1) = ZERO
 | |
|             END DO
 | |
|             CALL ZUNGQR( Q-1, Q-1, Q-1, V1T(2,2), LDV1T, WORK(ITAUQ1),
 | |
|      $                   WORK(IORGQR), LORGQRWORK, INFO )
 | |
|          END IF
 | |
|          IF( WANTV2T .AND. M-Q .GT. 0 ) THEN
 | |
|             P1 = MIN( P+1, M )
 | |
|             Q1 = MIN( Q+1, M )
 | |
|             CALL ZLACPY( 'L', M-Q, P, X12, LDX12, V2T, LDV2T )
 | |
|             IF( M .GT. P+Q ) THEN
 | |
|                CALL ZLACPY( 'L', M-P-Q, M-P-Q, X22(P1,Q1), LDX22,
 | |
|      $                      V2T(P+1,P+1), LDV2T )
 | |
|             END IF
 | |
|             CALL ZUNGQR( M-Q, M-Q, M-Q, V2T, LDV2T, WORK(ITAUQ2),
 | |
|      $                   WORK(IORGQR), LORGQRWORK, INFO )
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Compute the CSD of the matrix in bidiagonal-block form
 | |
| *
 | |
|       CALL ZBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q, THETA,
 | |
|      $             RWORK(IPHI), U1, LDU1, U2, LDU2, V1T, LDV1T, V2T,
 | |
|      $             LDV2T, RWORK(IB11D), RWORK(IB11E), RWORK(IB12D),
 | |
|      $             RWORK(IB12E), RWORK(IB21D), RWORK(IB21E),
 | |
|      $             RWORK(IB22D), RWORK(IB22E), RWORK(IBBCSD),
 | |
|      $             LBBCSDWORK, INFO )
 | |
| *
 | |
| *     Permute rows and columns to place identity submatrices in top-
 | |
| *     left corner of (1,1)-block and/or bottom-right corner of (1,2)-
 | |
| *     block and/or bottom-right corner of (2,1)-block and/or top-left
 | |
| *     corner of (2,2)-block
 | |
| *
 | |
|       IF( Q .GT. 0 .AND. WANTU2 ) THEN
 | |
|          DO I = 1, Q
 | |
|             IWORK(I) = M - P - Q + I
 | |
|          END DO
 | |
|          DO I = Q + 1, M - P
 | |
|             IWORK(I) = I - Q
 | |
|          END DO
 | |
|          IF( COLMAJOR ) THEN
 | |
|             CALL ZLAPMT( .FALSE., M-P, M-P, U2, LDU2, IWORK )
 | |
|          ELSE
 | |
|             CALL ZLAPMR( .FALSE., M-P, M-P, U2, LDU2, IWORK )
 | |
|          END IF
 | |
|       END IF
 | |
|       IF( M .GT. 0 .AND. WANTV2T ) THEN
 | |
|          DO I = 1, P
 | |
|             IWORK(I) = M - P - Q + I
 | |
|          END DO
 | |
|          DO I = P + 1, M - Q
 | |
|             IWORK(I) = I - P
 | |
|          END DO
 | |
|          IF( .NOT. COLMAJOR ) THEN
 | |
|             CALL ZLAPMT( .FALSE., M-Q, M-Q, V2T, LDV2T, IWORK )
 | |
|          ELSE
 | |
|             CALL ZLAPMR( .FALSE., M-Q, M-Q, V2T, LDV2T, IWORK )
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End ZUNCSD
 | |
| *
 | |
|       END
 | |
| 
 |