100 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			100 lines
		
	
	
		
			2.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DLARMM
 | |
| *
 | |
| * Definition:
 | |
| * ===========
 | |
| *
 | |
| *      DOUBLE PRECISION FUNCTION DLARMM( ANORM, BNORM, CNORM )
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
| *      DOUBLE PRECISION   ANORM, BNORM, CNORM
 | |
| *     ..
 | |
| *
 | |
| *>  \par Purpose:
 | |
| *  =======
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DLARMM returns a factor s in (0, 1] such that the linear updates
 | |
| *>
 | |
| *>    (s * C) - A * (s * B)  and  (s * C) - (s * A) * B
 | |
| *>
 | |
| *> cannot overflow, where A, B, and C are matrices of conforming
 | |
| *> dimensions.
 | |
| *>
 | |
| *> This is an auxiliary routine so there is no argument checking.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  =========
 | |
| *
 | |
| *> \param[in] ANORM
 | |
| *> \verbatim
 | |
| *>          ANORM is DOUBLE PRECISION
 | |
| *>          The infinity norm of A. ANORM >= 0.
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] BNORM
 | |
| *> \verbatim
 | |
| *>          BNORM is DOUBLE PRECISION
 | |
| *>          The infinity norm of B. BNORM >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] CNORM
 | |
| *> \verbatim
 | |
| *>          CNORM is DOUBLE PRECISION
 | |
| *>          The infinity norm of C. CNORM >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *>
 | |
| *  =====================================================================
 | |
| *>  References:
 | |
| *>    C. C. Kjelgaard Mikkelsen and L. Karlsson, Blocked Algorithms for
 | |
| *>    Robust Solution of Triangular Linear Systems. In: International
 | |
| *>    Conference on Parallel Processing and Applied Mathematics, pages
 | |
| *>    68--78. Springer, 2017.
 | |
| *>
 | |
| *> \ingroup OTHERauxiliary
 | |
| *  =====================================================================
 | |
| 
 | |
|       DOUBLE PRECISION FUNCTION DLARMM( ANORM, BNORM, CNORM )
 | |
|       IMPLICIT NONE
 | |
| *     .. Scalar Arguments ..
 | |
|       DOUBLE PRECISION   ANORM, BNORM, CNORM
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE, HALF, FOUR
 | |
|       PARAMETER          ( ONE = 1.0D0, HALF = 0.5D+0, FOUR = 4.0D0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|        DOUBLE PRECISION   BIGNUM, SMLNUM
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMCH
 | |
|       EXTERNAL           DLAMCH
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *
 | |
| *     Determine machine dependent parameters to control overflow.
 | |
| *
 | |
|       SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' )
 | |
|       BIGNUM = ( ONE / SMLNUM ) / FOUR
 | |
| *
 | |
| *     Compute a scale factor.
 | |
| *
 | |
|       DLARMM = ONE
 | |
|       IF( BNORM .LE. ONE ) THEN
 | |
|          IF( ANORM * BNORM .GT. BIGNUM - CNORM ) THEN
 | |
|             DLARMM = HALF
 | |
|          END IF
 | |
|       ELSE
 | |
|          IF( ANORM .GT. (BIGNUM - CNORM) / BNORM ) THEN
 | |
|             DLARMM = HALF / BNORM
 | |
|          END IF
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     ==== End of DLARMM ====
 | |
| *
 | |
|       END
 |