749 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			749 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DLAQZ0
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DLAQZ0 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqz0.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqz0.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqz0.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *     RECURSIVE SUBROUTINE DLAQZ0( WANTS, WANTQ, WANTZ, N, ILO, IHI, A,
 | |
| *    $                             LDA, B, LDB, ALPHAR, ALPHAI, BETA,
 | |
| *    $                             Q, LDQ, Z, LDZ, WORK, LWORK, REC,
 | |
| *    $                             INFO )
 | |
| *     IMPLICIT NONE
 | |
| *
 | |
| *     Arguments
 | |
| *     CHARACTER, INTENT( IN ) :: WANTS, WANTQ, WANTZ
 | |
| *     INTEGER, INTENT( IN ) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK,
 | |
| *    $         REC
 | |
| *
 | |
| *     INTEGER, INTENT( OUT ) :: INFO
 | |
| *
 | |
| *     DOUBLE PRECISION, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ),
 | |
| *    $                  Q( LDQ, * ), Z( LDZ, * ), ALPHAR( * ),
 | |
| *    $                  ALPHAI( * ), BETA( * ), WORK( * )
 | |
| *      ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DLAQZ0 computes the eigenvalues of a real matrix pair (H,T),
 | |
| *> where H is an upper Hessenberg matrix and T is upper triangular,
 | |
| *> using the double-shift QZ method.
 | |
| *> Matrix pairs of this type are produced by the reduction to
 | |
| *> generalized upper Hessenberg form of a real matrix pair (A,B):
 | |
| *>
 | |
| *>    A = Q1*H*Z1**T,  B = Q1*T*Z1**T,
 | |
| *>
 | |
| *> as computed by DGGHRD.
 | |
| *>
 | |
| *> If JOB='S', then the Hessenberg-triangular pair (H,T) is
 | |
| *> also reduced to generalized Schur form,
 | |
| *>
 | |
| *>    H = Q*S*Z**T,  T = Q*P*Z**T,
 | |
| *>
 | |
| *> where Q and Z are orthogonal matrices, P is an upper triangular
 | |
| *> matrix, and S is a quasi-triangular matrix with 1-by-1 and 2-by-2
 | |
| *> diagonal blocks.
 | |
| *>
 | |
| *> The 1-by-1 blocks correspond to real eigenvalues of the matrix pair
 | |
| *> (H,T) and the 2-by-2 blocks correspond to complex conjugate pairs of
 | |
| *> eigenvalues.
 | |
| *>
 | |
| *> Additionally, the 2-by-2 upper triangular diagonal blocks of P
 | |
| *> corresponding to 2-by-2 blocks of S are reduced to positive diagonal
 | |
| *> form, i.e., if S(j+1,j) is non-zero, then P(j+1,j) = P(j,j+1) = 0,
 | |
| *> P(j,j) > 0, and P(j+1,j+1) > 0.
 | |
| *>
 | |
| *> Optionally, the orthogonal matrix Q from the generalized Schur
 | |
| *> factorization may be postmultiplied into an input matrix Q1, and the
 | |
| *> orthogonal matrix Z may be postmultiplied into an input matrix Z1.
 | |
| *> If Q1 and Z1 are the orthogonal matrices from DGGHRD that reduced
 | |
| *> the matrix pair (A,B) to generalized upper Hessenberg form, then the
 | |
| *> output matrices Q1*Q and Z1*Z are the orthogonal factors from the
 | |
| *> generalized Schur factorization of (A,B):
 | |
| *>
 | |
| *>    A = (Q1*Q)*S*(Z1*Z)**T,  B = (Q1*Q)*P*(Z1*Z)**T.
 | |
| *>
 | |
| *> To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently,
 | |
| *> of (A,B)) are computed as a pair of values (alpha,beta), where alpha is
 | |
| *> complex and beta real.
 | |
| *> If beta is nonzero, lambda = alpha / beta is an eigenvalue of the
 | |
| *> generalized nonsymmetric eigenvalue problem (GNEP)
 | |
| *>    A*x = lambda*B*x
 | |
| *> and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the
 | |
| *> alternate form of the GNEP
 | |
| *>    mu*A*y = B*y.
 | |
| *> Real eigenvalues can be read directly from the generalized Schur
 | |
| *> form:
 | |
| *>   alpha = S(i,i), beta = P(i,i).
 | |
| *>
 | |
| *> Ref: C.B. Moler & G.W. Stewart, "An Algorithm for Generalized Matrix
 | |
| *>      Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973),
 | |
| *>      pp. 241--256.
 | |
| *>
 | |
| *> Ref: B. Kagstrom, D. Kressner, "Multishift Variants of the QZ
 | |
| *>      Algorithm with Aggressive Early Deflation", SIAM J. Numer.
 | |
| *>      Anal., 29(2006), pp. 199--227.
 | |
| *>
 | |
| *> Ref: T. Steel, D. Camps, K. Meerbergen, R. Vandebril "A multishift,
 | |
| *>      multipole rational QZ method with aggressive early deflation"
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] WANTS
 | |
| *> \verbatim
 | |
| *>          WANTS is CHARACTER*1
 | |
| *>          = 'E': Compute eigenvalues only;
 | |
| *>          = 'S': Compute eigenvalues and the Schur form.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] WANTQ
 | |
| *> \verbatim
 | |
| *>          WANTQ is CHARACTER*1
 | |
| *>          = 'N': Left Schur vectors (Q) are not computed;
 | |
| *>          = 'I': Q is initialized to the unit matrix and the matrix Q
 | |
| *>                 of left Schur vectors of (A,B) is returned;
 | |
| *>          = 'V': Q must contain an orthogonal matrix Q1 on entry and
 | |
| *>                 the product Q1*Q is returned.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] WANTZ
 | |
| *> \verbatim
 | |
| *>          WANTZ is CHARACTER*1
 | |
| *>          = 'N': Right Schur vectors (Z) are not computed;
 | |
| *>          = 'I': Z is initialized to the unit matrix and the matrix Z
 | |
| *>                 of right Schur vectors of (A,B) is returned;
 | |
| *>          = 'V': Z must contain an orthogonal matrix Z1 on entry and
 | |
| *>                 the product Z1*Z is returned.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrices A, B, Q, and Z.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ILO
 | |
| *> \verbatim
 | |
| *>          ILO is INTEGER
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IHI
 | |
| *> \verbatim
 | |
| *>          IHI is INTEGER
 | |
| *>          ILO and IHI mark the rows and columns of A which are in
 | |
| *>          Hessenberg form.  It is assumed that A is already upper
 | |
| *>          triangular in rows and columns 1:ILO-1 and IHI+1:N.
 | |
| *>          If N > 0, 1 <= ILO <= IHI <= N; if N = 0, ILO=1 and IHI=0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA, N)
 | |
| *>          On entry, the N-by-N upper Hessenberg matrix A.
 | |
| *>          On exit, if JOB = 'S', A contains the upper quasi-triangular
 | |
| *>          matrix S from the generalized Schur factorization.
 | |
| *>          If JOB = 'E', the diagonal blocks of A match those of S, but
 | |
| *>          the rest of A is unspecified.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max( 1, N ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION array, dimension (LDB, N)
 | |
| *>          On entry, the N-by-N upper triangular matrix B.
 | |
| *>          On exit, if JOB = 'S', B contains the upper triangular
 | |
| *>          matrix P from the generalized Schur factorization;
 | |
| *>          2-by-2 diagonal blocks of P corresponding to 2-by-2 blocks of S
 | |
| *>          are reduced to positive diagonal form, i.e., if A(j+1,j) is
 | |
| *>          non-zero, then B(j+1,j) = B(j,j+1) = 0, B(j,j) > 0, and
 | |
| *>          B(j+1,j+1) > 0.
 | |
| *>          If JOB = 'E', the diagonal blocks of B match those of P, but
 | |
| *>          the rest of B is unspecified.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max( 1, N ).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ALPHAR
 | |
| *> \verbatim
 | |
| *>          ALPHAR is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The real parts of each scalar alpha defining an eigenvalue
 | |
| *>          of GNEP.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ALPHAI
 | |
| *> \verbatim
 | |
| *>          ALPHAI is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The imaginary parts of each scalar alpha defining an
 | |
| *>          eigenvalue of GNEP.
 | |
| *>          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
 | |
| *>          positive, then the j-th and (j+1)-st eigenvalues are a
 | |
| *>          complex conjugate pair, with ALPHAI(j+1) = -ALPHAI(j).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BETA
 | |
| *> \verbatim
 | |
| *>          BETA is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The scalars beta that define the eigenvalues of GNEP.
 | |
| *>          Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and
 | |
| *>          beta = BETA(j) represent the j-th eigenvalue of the matrix
 | |
| *>          pair (A,B), in one of the forms lambda = alpha/beta or
 | |
| *>          mu = beta/alpha.  Since either lambda or mu may overflow,
 | |
| *>          they should not, in general, be computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Q
 | |
| *> \verbatim
 | |
| *>          Q is DOUBLE PRECISION array, dimension (LDQ, N)
 | |
| *>          On entry, if COMPQ = 'V', the orthogonal matrix Q1 used in
 | |
| *>          the reduction of (A,B) to generalized Hessenberg form.
 | |
| *>          On exit, if COMPQ = 'I', the orthogonal matrix of left Schur
 | |
| *>          vectors of (A,B), and if COMPQ = 'V', the orthogonal matrix
 | |
| *>          of left Schur vectors of (A,B).
 | |
| *>          Not referenced if COMPQ = 'N'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDQ
 | |
| *> \verbatim
 | |
| *>          LDQ is INTEGER
 | |
| *>          The leading dimension of the array Q.  LDQ >= 1.
 | |
| *>          If COMPQ='V' or 'I', then LDQ >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Z
 | |
| *> \verbatim
 | |
| *>          Z is DOUBLE PRECISION array, dimension (LDZ, N)
 | |
| *>          On entry, if COMPZ = 'V', the orthogonal matrix Z1 used in
 | |
| *>          the reduction of (A,B) to generalized Hessenberg form.
 | |
| *>          On exit, if COMPZ = 'I', the orthogonal matrix of
 | |
| *>          right Schur vectors of (H,T), and if COMPZ = 'V', the
 | |
| *>          orthogonal matrix of right Schur vectors of (A,B).
 | |
| *>          Not referenced if COMPZ = 'N'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>          The leading dimension of the array Z.  LDZ >= 1.
 | |
| *>          If COMPZ='V' or 'I', then LDZ >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.  LWORK >= max(1,N).
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] REC
 | |
| *> \verbatim
 | |
| *>          REC is INTEGER
 | |
| *>             REC indicates the current recursion level. Should be set
 | |
| *>             to 0 on first call.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>          < 0: if INFO = -i, the i-th argument had an illegal value
 | |
| *>          = 1,...,N: the QZ iteration did not converge.  (A,B) is not
 | |
| *>                     in Schur form, but ALPHAR(i), ALPHAI(i), and
 | |
| *>                     BETA(i), i=INFO+1,...,N should be correct.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Thijs Steel, KU Leuven
 | |
| *
 | |
| *> \date May 2020
 | |
| *
 | |
| *> \ingroup doubleGEcomputational
 | |
| *>
 | |
| *  =====================================================================
 | |
|       RECURSIVE SUBROUTINE DLAQZ0( WANTS, WANTQ, WANTZ, N, ILO, IHI, A,
 | |
|      $                             LDA, B, LDB, ALPHAR, ALPHAI, BETA,
 | |
|      $                             Q, LDQ, Z, LDZ, WORK, LWORK, REC,
 | |
|      $                             INFO )
 | |
|       IMPLICIT NONE
 | |
| 
 | |
| *     Arguments
 | |
|       CHARACTER, INTENT( IN ) :: WANTS, WANTQ, WANTZ
 | |
|       INTEGER, INTENT( IN ) :: N, ILO, IHI, LDA, LDB, LDQ, LDZ, LWORK,
 | |
|      $         REC
 | |
| 
 | |
|       INTEGER, INTENT( OUT ) :: INFO
 | |
| 
 | |
|       DOUBLE PRECISION, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ),
 | |
|      $                  Q( LDQ, * ), Z( LDZ, * ), ALPHAR( * ),
 | |
|      $                  ALPHAI( * ), BETA( * ), WORK( * )
 | |
| 
 | |
| *     Parameters
 | |
|       DOUBLE PRECISION :: ZERO, ONE, HALF
 | |
|       PARAMETER( ZERO = 0.0D0, ONE = 1.0D0, HALF = 0.5D0 )
 | |
| 
 | |
| *     Local scalars
 | |
|       DOUBLE PRECISION :: SMLNUM, ULP, ESHIFT, SAFMIN, SAFMAX, C1, S1,
 | |
|      $                    TEMP, SWAP, BNORM, BTOL
 | |
|       INTEGER :: ISTART, ISTOP, IITER, MAXIT, ISTART2, K, LD, NSHIFTS,
 | |
|      $           NBLOCK, NW, NMIN, NIBBLE, N_UNDEFLATED, N_DEFLATED,
 | |
|      $           NS, SWEEP_INFO, SHIFTPOS, LWORKREQ, K2, ISTARTM,
 | |
|      $           ISTOPM, IWANTS, IWANTQ, IWANTZ, NORM_INFO, AED_INFO,
 | |
|      $           NWR, NBR, NSR, ITEMP1, ITEMP2, RCOST, I
 | |
|       LOGICAL :: ILSCHUR, ILQ, ILZ
 | |
|       CHARACTER :: JBCMPZ*3
 | |
| 
 | |
| *     External Functions
 | |
|       EXTERNAL :: XERBLA, DHGEQZ, DLASET, DLAQZ3, DLAQZ4,
 | |
|      $            DLARTG, DROT
 | |
|       DOUBLE PRECISION, EXTERNAL :: DLAMCH, DLANHS
 | |
|       LOGICAL, EXTERNAL :: LSAME
 | |
|       INTEGER, EXTERNAL :: ILAENV
 | |
| 
 | |
| *
 | |
| *     Decode wantS,wantQ,wantZ
 | |
| *      
 | |
|       IF( LSAME( WANTS, 'E' ) ) THEN
 | |
|          ILSCHUR = .FALSE.
 | |
|          IWANTS = 1
 | |
|       ELSE IF( LSAME( WANTS, 'S' ) ) THEN
 | |
|          ILSCHUR = .TRUE.
 | |
|          IWANTS = 2
 | |
|       ELSE
 | |
|          IWANTS = 0
 | |
|       END IF
 | |
| 
 | |
|       IF( LSAME( WANTQ, 'N' ) ) THEN
 | |
|          ILQ = .FALSE.
 | |
|          IWANTQ = 1
 | |
|       ELSE IF( LSAME( WANTQ, 'V' ) ) THEN
 | |
|          ILQ = .TRUE.
 | |
|          IWANTQ = 2
 | |
|       ELSE IF( LSAME( WANTQ, 'I' ) ) THEN
 | |
|          ILQ = .TRUE.
 | |
|          IWANTQ = 3
 | |
|       ELSE
 | |
|          IWANTQ = 0
 | |
|       END IF
 | |
| 
 | |
|       IF( LSAME( WANTZ, 'N' ) ) THEN
 | |
|          ILZ = .FALSE.
 | |
|          IWANTZ = 1
 | |
|       ELSE IF( LSAME( WANTZ, 'V' ) ) THEN
 | |
|          ILZ = .TRUE.
 | |
|          IWANTZ = 2
 | |
|       ELSE IF( LSAME( WANTZ, 'I' ) ) THEN
 | |
|          ILZ = .TRUE.
 | |
|          IWANTZ = 3
 | |
|       ELSE
 | |
|          IWANTZ = 0
 | |
|       END IF
 | |
| *
 | |
| *     Check Argument Values
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( IWANTS.EQ.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( IWANTQ.EQ.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( IWANTZ.EQ.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( ILO.LT.1 ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( IHI.GT.N .OR. IHI.LT.ILO-1 ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDA.LT.N ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( LDB.LT.N ) THEN
 | |
|          INFO = -10
 | |
|       ELSE IF( LDQ.LT.1 .OR. ( ILQ .AND. LDQ.LT.N ) ) THEN
 | |
|          INFO = -15
 | |
|       ELSE IF( LDZ.LT.1 .OR. ( ILZ .AND. LDZ.LT.N ) ) THEN
 | |
|          INFO = -17
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DLAQZ0', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
|    
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.LE.0 ) THEN
 | |
|          WORK( 1 ) = DBLE( 1 )
 | |
|          RETURN
 | |
|       END IF
 | |
| 
 | |
| *
 | |
| *     Get the parameters
 | |
| *
 | |
|       JBCMPZ( 1:1 ) = WANTS
 | |
|       JBCMPZ( 2:2 ) = WANTQ
 | |
|       JBCMPZ( 3:3 ) = WANTZ
 | |
| 
 | |
|       NMIN = ILAENV( 12, 'DLAQZ0', JBCMPZ, N, ILO, IHI, LWORK )
 | |
| 
 | |
|       NWR = ILAENV( 13, 'DLAQZ0', JBCMPZ, N, ILO, IHI, LWORK )
 | |
|       NWR = MAX( 2, NWR )
 | |
|       NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )
 | |
| 
 | |
|       NIBBLE = ILAENV( 14, 'DLAQZ0', JBCMPZ, N, ILO, IHI, LWORK )
 | |
|       
 | |
|       NSR = ILAENV( 15, 'DLAQZ0', JBCMPZ, N, ILO, IHI, LWORK )
 | |
|       NSR = MIN( NSR, ( N+6 ) / 9, IHI-ILO )
 | |
|       NSR = MAX( 2, NSR-MOD( NSR, 2 ) )
 | |
| 
 | |
|       RCOST = ILAENV( 17, 'DLAQZ0', JBCMPZ, N, ILO, IHI, LWORK )
 | |
|       ITEMP1 = INT( NSR/SQRT( 1+2*NSR/( DBLE( RCOST )/100*N ) ) )
 | |
|       ITEMP1 = ( ( ITEMP1-1 )/4 )*4+4
 | |
|       NBR = NSR+ITEMP1
 | |
| 
 | |
|       IF( N .LT. NMIN .OR. REC .GE. 2 ) THEN
 | |
|          CALL DHGEQZ( WANTS, WANTQ, WANTZ, N, ILO, IHI, A, LDA, B, LDB,
 | |
|      $                ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, WORK,
 | |
|      $                LWORK, INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| 
 | |
| *
 | |
| *     Find out required workspace
 | |
| *
 | |
| 
 | |
| *     Workspace query to dlaqz3
 | |
|       NW = MAX( NWR, NMIN )
 | |
|       CALL DLAQZ3( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NW, A, LDA, B, LDB,
 | |
|      $             Q, LDQ, Z, LDZ, N_UNDEFLATED, N_DEFLATED, ALPHAR,
 | |
|      $             ALPHAI, BETA, WORK, NW, WORK, NW, WORK, -1, REC,
 | |
|      $             AED_INFO )
 | |
|       ITEMP1 = INT( WORK( 1 ) )
 | |
| *     Workspace query to dlaqz4
 | |
|       CALL DLAQZ4( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NSR, NBR, ALPHAR,
 | |
|      $             ALPHAI, BETA, A, LDA, B, LDB, Q, LDQ, Z, LDZ, WORK,
 | |
|      $             NBR, WORK, NBR, WORK, -1, SWEEP_INFO )
 | |
|       ITEMP2 = INT( WORK( 1 ) )
 | |
| 
 | |
|       LWORKREQ = MAX( ITEMP1+2*NW**2, ITEMP2+2*NBR**2 )
 | |
|       IF ( LWORK .EQ.-1 ) THEN
 | |
|          WORK( 1 ) = DBLE( LWORKREQ )
 | |
|          RETURN
 | |
|       ELSE IF ( LWORK .LT. LWORKREQ ) THEN
 | |
|          INFO = -19
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DLAQZ0', INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Initialize Q and Z
 | |
| *
 | |
|       IF( IWANTQ.EQ.3 ) CALL DLASET( 'FULL', N, N, ZERO, ONE, Q, LDQ )
 | |
|       IF( IWANTZ.EQ.3 ) CALL DLASET( 'FULL', N, N, ZERO, ONE, Z, LDZ )
 | |
| 
 | |
| *     Get machine constants
 | |
|       SAFMIN = DLAMCH( 'SAFE MINIMUM' )
 | |
|       SAFMAX = ONE/SAFMIN
 | |
|       ULP = DLAMCH( 'PRECISION' )
 | |
|       SMLNUM = SAFMIN*( DBLE( N )/ULP )
 | |
| 
 | |
|       BNORM = DLANHS( 'F', IHI-ILO+1, B( ILO, ILO ), LDB, WORK )
 | |
|       BTOL = MAX( SAFMIN, ULP*BNORM )
 | |
| 
 | |
|       ISTART = ILO
 | |
|       ISTOP = IHI
 | |
|       MAXIT = 3*( IHI-ILO+1 )
 | |
|       LD = 0
 | |
|  
 | |
|       DO IITER = 1, MAXIT
 | |
|          IF( IITER .GE. MAXIT ) THEN
 | |
|             INFO = ISTOP+1
 | |
|             GOTO 80
 | |
|          END IF
 | |
|          IF ( ISTART+1 .GE. ISTOP ) THEN
 | |
|             ISTOP = ISTART
 | |
|             EXIT
 | |
|          END IF
 | |
| 
 | |
| *        Check deflations at the end
 | |
|          IF ( ABS( A( ISTOP-1, ISTOP-2 ) ) .LE. MAX( SMLNUM,
 | |
|      $      ULP*( ABS( A( ISTOP-1, ISTOP-1 ) )+ABS( A( ISTOP-2,
 | |
|      $      ISTOP-2 ) ) ) ) ) THEN
 | |
|             A( ISTOP-1, ISTOP-2 ) = ZERO
 | |
|             ISTOP = ISTOP-2
 | |
|             LD = 0
 | |
|             ESHIFT = ZERO
 | |
|          ELSE IF ( ABS( A( ISTOP, ISTOP-1 ) ) .LE. MAX( SMLNUM,
 | |
|      $      ULP*( ABS( A( ISTOP, ISTOP ) )+ABS( A( ISTOP-1,
 | |
|      $      ISTOP-1 ) ) ) ) ) THEN
 | |
|             A( ISTOP, ISTOP-1 ) = ZERO
 | |
|             ISTOP = ISTOP-1
 | |
|             LD = 0
 | |
|             ESHIFT = ZERO
 | |
|          END IF
 | |
| *        Check deflations at the start
 | |
|          IF ( ABS( A( ISTART+2, ISTART+1 ) ) .LE. MAX( SMLNUM,
 | |
|      $      ULP*( ABS( A( ISTART+1, ISTART+1 ) )+ABS( A( ISTART+2,
 | |
|      $      ISTART+2 ) ) ) ) ) THEN
 | |
|             A( ISTART+2, ISTART+1 ) = ZERO
 | |
|             ISTART = ISTART+2
 | |
|             LD = 0
 | |
|             ESHIFT = ZERO
 | |
|          ELSE IF ( ABS( A( ISTART+1, ISTART ) ) .LE. MAX( SMLNUM,
 | |
|      $      ULP*( ABS( A( ISTART, ISTART ) )+ABS( A( ISTART+1,
 | |
|      $      ISTART+1 ) ) ) ) ) THEN
 | |
|             A( ISTART+1, ISTART ) = ZERO
 | |
|             ISTART = ISTART+1
 | |
|             LD = 0
 | |
|             ESHIFT = ZERO
 | |
|          END IF
 | |
| 
 | |
|          IF ( ISTART+1 .GE. ISTOP ) THEN
 | |
|             EXIT
 | |
|          END IF
 | |
| 
 | |
| *        Check interior deflations
 | |
|          ISTART2 = ISTART
 | |
|          DO K = ISTOP, ISTART+1, -1
 | |
|             IF ( ABS( A( K, K-1 ) ) .LE. MAX( SMLNUM, ULP*( ABS( A( K,
 | |
|      $         K ) )+ABS( A( K-1, K-1 ) ) ) ) ) THEN
 | |
|                A( K, K-1 ) = ZERO
 | |
|                ISTART2 = K
 | |
|                EXIT
 | |
|             END IF
 | |
|          END DO
 | |
| 
 | |
| *        Get range to apply rotations to
 | |
|          IF ( ILSCHUR ) THEN
 | |
|             ISTARTM = 1
 | |
|             ISTOPM = N
 | |
|          ELSE
 | |
|             ISTARTM = ISTART2
 | |
|             ISTOPM = ISTOP
 | |
|          END IF
 | |
| 
 | |
| *        Check infinite eigenvalues, this is done without blocking so might
 | |
| *        slow down the method when many infinite eigenvalues are present
 | |
|          K = ISTOP
 | |
|          DO WHILE ( K.GE.ISTART2 )
 | |
| 
 | |
|             IF( ABS( B( K, K ) ) .LT. BTOL ) THEN
 | |
| *              A diagonal element of B is negligible, move it
 | |
| *              to the top and deflate it
 | |
|                
 | |
|                DO K2 = K, ISTART2+1, -1
 | |
|                   CALL DLARTG( B( K2-1, K2 ), B( K2-1, K2-1 ), C1, S1,
 | |
|      $                         TEMP )
 | |
|                   B( K2-1, K2 ) = TEMP
 | |
|                   B( K2-1, K2-1 ) = ZERO
 | |
| 
 | |
|                   CALL DROT( K2-2-ISTARTM+1, B( ISTARTM, K2 ), 1,
 | |
|      $                       B( ISTARTM, K2-1 ), 1, C1, S1 )
 | |
|                   CALL DROT( MIN( K2+1, ISTOP )-ISTARTM+1, A( ISTARTM,
 | |
|      $                       K2 ), 1, A( ISTARTM, K2-1 ), 1, C1, S1 )
 | |
|                   IF ( ILZ ) THEN
 | |
|                      CALL DROT( N, Z( 1, K2 ), 1, Z( 1, K2-1 ), 1, C1,
 | |
|      $                          S1 )
 | |
|                   END IF
 | |
| 
 | |
|                   IF( K2.LT.ISTOP ) THEN
 | |
|                      CALL DLARTG( A( K2, K2-1 ), A( K2+1, K2-1 ), C1,
 | |
|      $                            S1, TEMP )
 | |
|                      A( K2, K2-1 ) = TEMP
 | |
|                      A( K2+1, K2-1 ) = ZERO
 | |
| 
 | |
|                      CALL DROT( ISTOPM-K2+1, A( K2, K2 ), LDA, A( K2+1,
 | |
|      $                          K2 ), LDA, C1, S1 )
 | |
|                      CALL DROT( ISTOPM-K2+1, B( K2, K2 ), LDB, B( K2+1,
 | |
|      $                          K2 ), LDB, C1, S1 )
 | |
|                      IF( ILQ ) THEN
 | |
|                         CALL DROT( N, Q( 1, K2 ), 1, Q( 1, K2+1 ), 1,
 | |
|      $                             C1, S1 )
 | |
|                      END IF
 | |
|                   END IF
 | |
| 
 | |
|                END DO
 | |
| 
 | |
|                IF( ISTART2.LT.ISTOP )THEN
 | |
|                   CALL DLARTG( A( ISTART2, ISTART2 ), A( ISTART2+1,
 | |
|      $                         ISTART2 ), C1, S1, TEMP )
 | |
|                   A( ISTART2, ISTART2 ) = TEMP
 | |
|                   A( ISTART2+1, ISTART2 ) = ZERO
 | |
| 
 | |
|                   CALL DROT( ISTOPM-( ISTART2+1 )+1, A( ISTART2,
 | |
|      $                       ISTART2+1 ), LDA, A( ISTART2+1,
 | |
|      $                       ISTART2+1 ), LDA, C1, S1 )
 | |
|                   CALL DROT( ISTOPM-( ISTART2+1 )+1, B( ISTART2,
 | |
|      $                       ISTART2+1 ), LDB, B( ISTART2+1,
 | |
|      $                       ISTART2+1 ), LDB, C1, S1 )
 | |
|                   IF( ILQ ) THEN
 | |
|                      CALL DROT( N, Q( 1, ISTART2 ), 1, Q( 1,
 | |
|      $                          ISTART2+1 ), 1, C1, S1 )
 | |
|                   END IF
 | |
|                END IF
 | |
| 
 | |
|                ISTART2 = ISTART2+1
 | |
|    
 | |
|             END IF
 | |
|             K = K-1
 | |
|          END DO
 | |
| 
 | |
| *        istart2 now points to the top of the bottom right
 | |
| *        unreduced Hessenberg block
 | |
|          IF ( ISTART2 .GE. ISTOP ) THEN
 | |
|             ISTOP = ISTART2-1
 | |
|             LD = 0
 | |
|             ESHIFT = ZERO
 | |
|             CYCLE
 | |
|          END IF
 | |
| 
 | |
|          NW = NWR
 | |
|          NSHIFTS = NSR
 | |
|          NBLOCK = NBR
 | |
| 
 | |
|          IF ( ISTOP-ISTART2+1 .LT. NMIN ) THEN
 | |
| *           Setting nw to the size of the subblock will make AED deflate
 | |
| *           all the eigenvalues. This is slightly more efficient than just
 | |
| *           using DHGEQZ because the off diagonal part gets updated via BLAS.
 | |
|             IF ( ISTOP-ISTART+1 .LT. NMIN ) THEN
 | |
|                NW = ISTOP-ISTART+1
 | |
|                ISTART2 = ISTART
 | |
|             ELSE
 | |
|                NW = ISTOP-ISTART2+1
 | |
|             END IF
 | |
|          END IF
 | |
| 
 | |
| *
 | |
| *        Time for AED
 | |
| *
 | |
|          CALL DLAQZ3( ILSCHUR, ILQ, ILZ, N, ISTART2, ISTOP, NW, A, LDA,
 | |
|      $                B, LDB, Q, LDQ, Z, LDZ, N_UNDEFLATED, N_DEFLATED,
 | |
|      $                ALPHAR, ALPHAI, BETA, WORK, NW, WORK( NW**2+1 ),
 | |
|      $                NW, WORK( 2*NW**2+1 ), LWORK-2*NW**2, REC,
 | |
|      $                AED_INFO )
 | |
| 
 | |
|          IF ( N_DEFLATED > 0 ) THEN
 | |
|             ISTOP = ISTOP-N_DEFLATED
 | |
|             LD = 0
 | |
|             ESHIFT = ZERO
 | |
|          END IF
 | |
| 
 | |
|          IF ( 100*N_DEFLATED > NIBBLE*( N_DEFLATED+N_UNDEFLATED ) .OR.
 | |
|      $      ISTOP-ISTART2+1 .LT. NMIN ) THEN
 | |
| *           AED has uncovered many eigenvalues. Skip a QZ sweep and run
 | |
| *           AED again.
 | |
|             CYCLE
 | |
|          END IF
 | |
| 
 | |
|          LD = LD+1
 | |
| 
 | |
|          NS = MIN( NSHIFTS, ISTOP-ISTART2 )
 | |
|          NS = MIN( NS, N_UNDEFLATED )
 | |
|          SHIFTPOS = ISTOP-N_UNDEFLATED+1
 | |
| *
 | |
| *        Shuffle shifts to put double shifts in front
 | |
| *        This ensures that we don't split up a double shift
 | |
| *
 | |
|          DO I = SHIFTPOS, SHIFTPOS+N_UNDEFLATED-1, 2
 | |
|             IF( ALPHAI( I ).NE.-ALPHAI( I+1 ) ) THEN
 | |
| *
 | |
|                SWAP = ALPHAR( I )
 | |
|                ALPHAR( I ) = ALPHAR( I+1 )
 | |
|                ALPHAR( I+1 ) = ALPHAR( I+2 )
 | |
|                ALPHAR( I+2 ) = SWAP
 | |
| 
 | |
|                SWAP = ALPHAI( I )
 | |
|                ALPHAI( I ) = ALPHAI( I+1 )
 | |
|                ALPHAI( I+1 ) = ALPHAI( I+2 )
 | |
|                ALPHAI( I+2 ) = SWAP
 | |
|                
 | |
|                SWAP = BETA( I )
 | |
|                BETA( I ) = BETA( I+1 )
 | |
|                BETA( I+1 ) = BETA( I+2 )
 | |
|                BETA( I+2 ) = SWAP
 | |
|             END IF
 | |
|          END DO
 | |
| 
 | |
|          IF ( MOD( LD, 6 ) .EQ. 0 ) THEN
 | |
| * 
 | |
| *           Exceptional shift.  Chosen for no particularly good reason.
 | |
| *
 | |
|             IF( ( DBLE( MAXIT )*SAFMIN )*ABS( A( ISTOP,
 | |
|      $         ISTOP-1 ) ).LT.ABS( A( ISTOP-1, ISTOP-1 ) ) ) THEN
 | |
|                ESHIFT = A( ISTOP, ISTOP-1 )/B( ISTOP-1, ISTOP-1 )
 | |
|             ELSE
 | |
|                ESHIFT = ESHIFT+ONE/( SAFMIN*DBLE( MAXIT ) )
 | |
|             END IF
 | |
|             ALPHAR( SHIFTPOS ) = ONE
 | |
|             ALPHAR( SHIFTPOS+1 ) = ZERO
 | |
|             ALPHAI( SHIFTPOS ) = ZERO
 | |
|             ALPHAI( SHIFTPOS+1 ) = ZERO
 | |
|             BETA( SHIFTPOS ) = ESHIFT
 | |
|             BETA( SHIFTPOS+1 ) = ESHIFT
 | |
|             NS = 2
 | |
|          END IF
 | |
| 
 | |
| *
 | |
| *        Time for a QZ sweep
 | |
| *
 | |
|          CALL DLAQZ4( ILSCHUR, ILQ, ILZ, N, ISTART2, ISTOP, NS, NBLOCK,
 | |
|      $                ALPHAR( SHIFTPOS ), ALPHAI( SHIFTPOS ),
 | |
|      $                BETA( SHIFTPOS ), A, LDA, B, LDB, Q, LDQ, Z, LDZ,
 | |
|      $                WORK, NBLOCK, WORK( NBLOCK**2+1 ), NBLOCK,
 | |
|      $                WORK( 2*NBLOCK**2+1 ), LWORK-2*NBLOCK**2,
 | |
|      $                SWEEP_INFO )
 | |
| 
 | |
|       END DO
 | |
| 
 | |
| *
 | |
| *     Call DHGEQZ to normalize the eigenvalue blocks and set the eigenvalues
 | |
| *     If all the eigenvalues have been found, DHGEQZ will not do any iterations
 | |
| *     and only normalize the blocks. In case of a rare convergence failure,
 | |
| *     the single shift might perform better.
 | |
| *
 | |
|    80 CALL DHGEQZ( WANTS, WANTQ, WANTZ, N, ILO, IHI, A, LDA, B, LDB,
 | |
|      $             ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, WORK, LWORK,
 | |
|      $             NORM_INFO )
 | |
|       
 | |
|       INFO = NORM_INFO
 | |
| 
 | |
|       END SUBROUTINE
 |