642 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			642 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SSBTRD
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SSBTRD + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssbtrd.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssbtrd.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssbtrd.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SSBTRD( VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ,
 | |
| *                          WORK, INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO, VECT
 | |
| *       INTEGER            INFO, KD, LDAB, LDQ, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               AB( LDAB, * ), D( * ), E( * ), Q( LDQ, * ),
 | |
| *      $                   WORK( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SSBTRD reduces a real symmetric band matrix A to symmetric
 | |
| *> tridiagonal form T by an orthogonal similarity transformation:
 | |
| *> Q**T * A * Q = T.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] VECT
 | |
| *> \verbatim
 | |
| *>          VECT is CHARACTER*1
 | |
| *>          = 'N':  do not form Q;
 | |
| *>          = 'V':  form Q;
 | |
| *>          = 'U':  update a matrix X, by forming X*Q.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  Upper triangle of A is stored;
 | |
| *>          = 'L':  Lower triangle of A is stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KD
 | |
| *> \verbatim
 | |
| *>          KD is INTEGER
 | |
| *>          The number of superdiagonals of the matrix A if UPLO = 'U',
 | |
| *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] AB
 | |
| *> \verbatim
 | |
| *>          AB is REAL array, dimension (LDAB,N)
 | |
| *>          On entry, the upper or lower triangle of the symmetric band
 | |
| *>          matrix A, stored in the first KD+1 rows of the array.  The
 | |
| *>          j-th column of A is stored in the j-th column of the array AB
 | |
| *>          as follows:
 | |
| *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
 | |
| *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
 | |
| *>          On exit, the diagonal elements of AB are overwritten by the
 | |
| *>          diagonal elements of the tridiagonal matrix T; if KD > 0, the
 | |
| *>          elements on the first superdiagonal (if UPLO = 'U') or the
 | |
| *>          first subdiagonal (if UPLO = 'L') are overwritten by the
 | |
| *>          off-diagonal elements of T; the rest of AB is overwritten by
 | |
| *>          values generated during the reduction.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAB
 | |
| *> \verbatim
 | |
| *>          LDAB is INTEGER
 | |
| *>          The leading dimension of the array AB.  LDAB >= KD+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension (N)
 | |
| *>          The diagonal elements of the tridiagonal matrix T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] E
 | |
| *> \verbatim
 | |
| *>          E is REAL array, dimension (N-1)
 | |
| *>          The off-diagonal elements of the tridiagonal matrix T:
 | |
| *>          E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Q
 | |
| *> \verbatim
 | |
| *>          Q is REAL array, dimension (LDQ,N)
 | |
| *>          On entry, if VECT = 'U', then Q must contain an N-by-N
 | |
| *>          matrix X; if VECT = 'N' or 'V', then Q need not be set.
 | |
| *>
 | |
| *>          On exit:
 | |
| *>          if VECT = 'V', Q contains the N-by-N orthogonal matrix Q;
 | |
| *>          if VECT = 'U', Q contains the product X*Q;
 | |
| *>          if VECT = 'N', the array Q is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDQ
 | |
| *> \verbatim
 | |
| *>          LDQ is INTEGER
 | |
| *>          The leading dimension of the array Q.
 | |
| *>          LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup realOTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  Modified by Linda Kaufman, Bell Labs.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SSBTRD( VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ,
 | |
|      $                   WORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO, VECT
 | |
|       INTEGER            INFO, KD, LDAB, LDQ, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               AB( LDAB, * ), D( * ), E( * ), Q( LDQ, * ),
 | |
|      $                   WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            INITQ, UPPER, WANTQ
 | |
|       INTEGER            I, I2, IBL, INCA, INCX, IQAEND, IQB, IQEND, J,
 | |
|      $                   J1, J1END, J1INC, J2, JEND, JIN, JINC, K, KD1,
 | |
|      $                   KDM1, KDN, L, LAST, LEND, NQ, NR, NRT
 | |
|       REAL               TEMP
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SLAR2V, SLARGV, SLARTG, SLARTV, SLASET, SROT,
 | |
|      $                   XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters
 | |
| *
 | |
|       INITQ = LSAME( VECT, 'V' )
 | |
|       WANTQ = INITQ .OR. LSAME( VECT, 'U' )
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       KD1 = KD + 1
 | |
|       KDM1 = KD - 1
 | |
|       INCX = LDAB - 1
 | |
|       IQEND = 1
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( .NOT.WANTQ .AND. .NOT.LSAME( VECT, 'N' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( KD.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDAB.LT.KD1 ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDQ.LT.MAX( 1, N ) .AND. WANTQ ) THEN
 | |
|          INFO = -10
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SSBTRD', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Initialize Q to the unit matrix, if needed
 | |
| *
 | |
|       IF( INITQ )
 | |
|      $   CALL SLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
 | |
| *
 | |
| *     Wherever possible, plane rotations are generated and applied in
 | |
| *     vector operations of length NR over the index set J1:J2:KD1.
 | |
| *
 | |
| *     The cosines and sines of the plane rotations are stored in the
 | |
| *     arrays D and WORK.
 | |
| *
 | |
|       INCA = KD1*LDAB
 | |
|       KDN = MIN( N-1, KD )
 | |
|       IF( UPPER ) THEN
 | |
| *
 | |
|          IF( KD.GT.1 ) THEN
 | |
| *
 | |
| *           Reduce to tridiagonal form, working with upper triangle
 | |
| *
 | |
|             NR = 0
 | |
|             J1 = KDN + 2
 | |
|             J2 = 1
 | |
| *
 | |
|             DO 90 I = 1, N - 2
 | |
| *
 | |
| *              Reduce i-th row of matrix to tridiagonal form
 | |
| *
 | |
|                DO 80 K = KDN + 1, 2, -1
 | |
|                   J1 = J1 + KDN
 | |
|                   J2 = J2 + KDN
 | |
| *
 | |
|                   IF( NR.GT.0 ) THEN
 | |
| *
 | |
| *                    generate plane rotations to annihilate nonzero
 | |
| *                    elements which have been created outside the band
 | |
| *
 | |
|                      CALL SLARGV( NR, AB( 1, J1-1 ), INCA, WORK( J1 ),
 | |
|      $                            KD1, D( J1 ), KD1 )
 | |
| *
 | |
| *                    apply rotations from the right
 | |
| *
 | |
| *
 | |
| *                    Dependent on the the number of diagonals either
 | |
| *                    SLARTV or SROT is used
 | |
| *
 | |
|                      IF( NR.GE.2*KD-1 ) THEN
 | |
|                         DO 10 L = 1, KD - 1
 | |
|                            CALL SLARTV( NR, AB( L+1, J1-1 ), INCA,
 | |
|      $                                  AB( L, J1 ), INCA, D( J1 ),
 | |
|      $                                  WORK( J1 ), KD1 )
 | |
|    10                   CONTINUE
 | |
| *
 | |
|                      ELSE
 | |
|                         JEND = J1 + ( NR-1 )*KD1
 | |
|                         DO 20 JINC = J1, JEND, KD1
 | |
|                            CALL SROT( KDM1, AB( 2, JINC-1 ), 1,
 | |
|      $                                AB( 1, JINC ), 1, D( JINC ),
 | |
|      $                                WORK( JINC ) )
 | |
|    20                   CONTINUE
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
| *
 | |
|                   IF( K.GT.2 ) THEN
 | |
|                      IF( K.LE.N-I+1 ) THEN
 | |
| *
 | |
| *                       generate plane rotation to annihilate a(i,i+k-1)
 | |
| *                       within the band
 | |
| *
 | |
|                         CALL SLARTG( AB( KD-K+3, I+K-2 ),
 | |
|      $                               AB( KD-K+2, I+K-1 ), D( I+K-1 ),
 | |
|      $                               WORK( I+K-1 ), TEMP )
 | |
|                         AB( KD-K+3, I+K-2 ) = TEMP
 | |
| *
 | |
| *                       apply rotation from the right
 | |
| *
 | |
|                         CALL SROT( K-3, AB( KD-K+4, I+K-2 ), 1,
 | |
|      $                             AB( KD-K+3, I+K-1 ), 1, D( I+K-1 ),
 | |
|      $                             WORK( I+K-1 ) )
 | |
|                      END IF
 | |
|                      NR = NR + 1
 | |
|                      J1 = J1 - KDN - 1
 | |
|                   END IF
 | |
| *
 | |
| *                 apply plane rotations from both sides to diagonal
 | |
| *                 blocks
 | |
| *
 | |
|                   IF( NR.GT.0 )
 | |
|      $               CALL SLAR2V( NR, AB( KD1, J1-1 ), AB( KD1, J1 ),
 | |
|      $                            AB( KD, J1 ), INCA, D( J1 ),
 | |
|      $                            WORK( J1 ), KD1 )
 | |
| *
 | |
| *                 apply plane rotations from the left
 | |
| *
 | |
|                   IF( NR.GT.0 ) THEN
 | |
|                      IF( 2*KD-1.LT.NR ) THEN
 | |
| *
 | |
| *                    Dependent on the the number of diagonals either
 | |
| *                    SLARTV or SROT is used
 | |
| *
 | |
|                         DO 30 L = 1, KD - 1
 | |
|                            IF( J2+L.GT.N ) THEN
 | |
|                               NRT = NR - 1
 | |
|                            ELSE
 | |
|                               NRT = NR
 | |
|                            END IF
 | |
|                            IF( NRT.GT.0 )
 | |
|      $                        CALL SLARTV( NRT, AB( KD-L, J1+L ), INCA,
 | |
|      $                                     AB( KD-L+1, J1+L ), INCA,
 | |
|      $                                     D( J1 ), WORK( J1 ), KD1 )
 | |
|    30                   CONTINUE
 | |
|                      ELSE
 | |
|                         J1END = J1 + KD1*( NR-2 )
 | |
|                         IF( J1END.GE.J1 ) THEN
 | |
|                            DO 40 JIN = J1, J1END, KD1
 | |
|                               CALL SROT( KD-1, AB( KD-1, JIN+1 ), INCX,
 | |
|      $                                   AB( KD, JIN+1 ), INCX,
 | |
|      $                                   D( JIN ), WORK( JIN ) )
 | |
|    40                      CONTINUE
 | |
|                         END IF
 | |
|                         LEND = MIN( KDM1, N-J2 )
 | |
|                         LAST = J1END + KD1
 | |
|                         IF( LEND.GT.0 )
 | |
|      $                     CALL SROT( LEND, AB( KD-1, LAST+1 ), INCX,
 | |
|      $                                AB( KD, LAST+1 ), INCX, D( LAST ),
 | |
|      $                                WORK( LAST ) )
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
|                   IF( WANTQ ) THEN
 | |
| *
 | |
| *                    accumulate product of plane rotations in Q
 | |
| *
 | |
|                      IF( INITQ ) THEN
 | |
| *
 | |
| *                 take advantage of the fact that Q was
 | |
| *                 initially the Identity matrix
 | |
| *
 | |
|                         IQEND = MAX( IQEND, J2 )
 | |
|                         I2 = MAX( 0, K-3 )
 | |
|                         IQAEND = 1 + I*KD
 | |
|                         IF( K.EQ.2 )
 | |
|      $                     IQAEND = IQAEND + KD
 | |
|                         IQAEND = MIN( IQAEND, IQEND )
 | |
|                         DO 50 J = J1, J2, KD1
 | |
|                            IBL = I - I2 / KDM1
 | |
|                            I2 = I2 + 1
 | |
|                            IQB = MAX( 1, J-IBL )
 | |
|                            NQ = 1 + IQAEND - IQB
 | |
|                            IQAEND = MIN( IQAEND+KD, IQEND )
 | |
|                            CALL SROT( NQ, Q( IQB, J-1 ), 1, Q( IQB, J ),
 | |
|      $                                1, D( J ), WORK( J ) )
 | |
|    50                   CONTINUE
 | |
|                      ELSE
 | |
| *
 | |
|                         DO 60 J = J1, J2, KD1
 | |
|                            CALL SROT( N, Q( 1, J-1 ), 1, Q( 1, J ), 1,
 | |
|      $                                D( J ), WORK( J ) )
 | |
|    60                   CONTINUE
 | |
|                      END IF
 | |
| *
 | |
|                   END IF
 | |
| *
 | |
|                   IF( J2+KDN.GT.N ) THEN
 | |
| *
 | |
| *                    adjust J2 to keep within the bounds of the matrix
 | |
| *
 | |
|                      NR = NR - 1
 | |
|                      J2 = J2 - KDN - 1
 | |
|                   END IF
 | |
| *
 | |
|                   DO 70 J = J1, J2, KD1
 | |
| *
 | |
| *                    create nonzero element a(j-1,j+kd) outside the band
 | |
| *                    and store it in WORK
 | |
| *
 | |
|                      WORK( J+KD ) = WORK( J )*AB( 1, J+KD )
 | |
|                      AB( 1, J+KD ) = D( J )*AB( 1, J+KD )
 | |
|    70             CONTINUE
 | |
|    80          CONTINUE
 | |
|    90       CONTINUE
 | |
|          END IF
 | |
| *
 | |
|          IF( KD.GT.0 ) THEN
 | |
| *
 | |
| *           copy off-diagonal elements to E
 | |
| *
 | |
|             DO 100 I = 1, N - 1
 | |
|                E( I ) = AB( KD, I+1 )
 | |
|   100       CONTINUE
 | |
|          ELSE
 | |
| *
 | |
| *           set E to zero if original matrix was diagonal
 | |
| *
 | |
|             DO 110 I = 1, N - 1
 | |
|                E( I ) = ZERO
 | |
|   110       CONTINUE
 | |
|          END IF
 | |
| *
 | |
| *        copy diagonal elements to D
 | |
| *
 | |
|          DO 120 I = 1, N
 | |
|             D( I ) = AB( KD1, I )
 | |
|   120    CONTINUE
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
|          IF( KD.GT.1 ) THEN
 | |
| *
 | |
| *           Reduce to tridiagonal form, working with lower triangle
 | |
| *
 | |
|             NR = 0
 | |
|             J1 = KDN + 2
 | |
|             J2 = 1
 | |
| *
 | |
|             DO 210 I = 1, N - 2
 | |
| *
 | |
| *              Reduce i-th column of matrix to tridiagonal form
 | |
| *
 | |
|                DO 200 K = KDN + 1, 2, -1
 | |
|                   J1 = J1 + KDN
 | |
|                   J2 = J2 + KDN
 | |
| *
 | |
|                   IF( NR.GT.0 ) THEN
 | |
| *
 | |
| *                    generate plane rotations to annihilate nonzero
 | |
| *                    elements which have been created outside the band
 | |
| *
 | |
|                      CALL SLARGV( NR, AB( KD1, J1-KD1 ), INCA,
 | |
|      $                            WORK( J1 ), KD1, D( J1 ), KD1 )
 | |
| *
 | |
| *                    apply plane rotations from one side
 | |
| *
 | |
| *
 | |
| *                    Dependent on the the number of diagonals either
 | |
| *                    SLARTV or SROT is used
 | |
| *
 | |
|                      IF( NR.GT.2*KD-1 ) THEN
 | |
|                         DO 130 L = 1, KD - 1
 | |
|                            CALL SLARTV( NR, AB( KD1-L, J1-KD1+L ), INCA,
 | |
|      $                                  AB( KD1-L+1, J1-KD1+L ), INCA,
 | |
|      $                                  D( J1 ), WORK( J1 ), KD1 )
 | |
|   130                   CONTINUE
 | |
|                      ELSE
 | |
|                         JEND = J1 + KD1*( NR-1 )
 | |
|                         DO 140 JINC = J1, JEND, KD1
 | |
|                            CALL SROT( KDM1, AB( KD, JINC-KD ), INCX,
 | |
|      $                                AB( KD1, JINC-KD ), INCX,
 | |
|      $                                D( JINC ), WORK( JINC ) )
 | |
|   140                   CONTINUE
 | |
|                      END IF
 | |
| *
 | |
|                   END IF
 | |
| *
 | |
|                   IF( K.GT.2 ) THEN
 | |
|                      IF( K.LE.N-I+1 ) THEN
 | |
| *
 | |
| *                       generate plane rotation to annihilate a(i+k-1,i)
 | |
| *                       within the band
 | |
| *
 | |
|                         CALL SLARTG( AB( K-1, I ), AB( K, I ),
 | |
|      $                               D( I+K-1 ), WORK( I+K-1 ), TEMP )
 | |
|                         AB( K-1, I ) = TEMP
 | |
| *
 | |
| *                       apply rotation from the left
 | |
| *
 | |
|                         CALL SROT( K-3, AB( K-2, I+1 ), LDAB-1,
 | |
|      $                             AB( K-1, I+1 ), LDAB-1, D( I+K-1 ),
 | |
|      $                             WORK( I+K-1 ) )
 | |
|                      END IF
 | |
|                      NR = NR + 1
 | |
|                      J1 = J1 - KDN - 1
 | |
|                   END IF
 | |
| *
 | |
| *                 apply plane rotations from both sides to diagonal
 | |
| *                 blocks
 | |
| *
 | |
|                   IF( NR.GT.0 )
 | |
|      $               CALL SLAR2V( NR, AB( 1, J1-1 ), AB( 1, J1 ),
 | |
|      $                            AB( 2, J1-1 ), INCA, D( J1 ),
 | |
|      $                            WORK( J1 ), KD1 )
 | |
| *
 | |
| *                 apply plane rotations from the right
 | |
| *
 | |
| *
 | |
| *                    Dependent on the the number of diagonals either
 | |
| *                    SLARTV or SROT is used
 | |
| *
 | |
|                   IF( NR.GT.0 ) THEN
 | |
|                      IF( NR.GT.2*KD-1 ) THEN
 | |
|                         DO 150 L = 1, KD - 1
 | |
|                            IF( J2+L.GT.N ) THEN
 | |
|                               NRT = NR - 1
 | |
|                            ELSE
 | |
|                               NRT = NR
 | |
|                            END IF
 | |
|                            IF( NRT.GT.0 )
 | |
|      $                        CALL SLARTV( NRT, AB( L+2, J1-1 ), INCA,
 | |
|      $                                     AB( L+1, J1 ), INCA, D( J1 ),
 | |
|      $                                     WORK( J1 ), KD1 )
 | |
|   150                   CONTINUE
 | |
|                      ELSE
 | |
|                         J1END = J1 + KD1*( NR-2 )
 | |
|                         IF( J1END.GE.J1 ) THEN
 | |
|                            DO 160 J1INC = J1, J1END, KD1
 | |
|                               CALL SROT( KDM1, AB( 3, J1INC-1 ), 1,
 | |
|      $                                   AB( 2, J1INC ), 1, D( J1INC ),
 | |
|      $                                   WORK( J1INC ) )
 | |
|   160                      CONTINUE
 | |
|                         END IF
 | |
|                         LEND = MIN( KDM1, N-J2 )
 | |
|                         LAST = J1END + KD1
 | |
|                         IF( LEND.GT.0 )
 | |
|      $                     CALL SROT( LEND, AB( 3, LAST-1 ), 1,
 | |
|      $                                AB( 2, LAST ), 1, D( LAST ),
 | |
|      $                                WORK( LAST ) )
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
| *
 | |
| *
 | |
|                   IF( WANTQ ) THEN
 | |
| *
 | |
| *                    accumulate product of plane rotations in Q
 | |
| *
 | |
|                      IF( INITQ ) THEN
 | |
| *
 | |
| *                 take advantage of the fact that Q was
 | |
| *                 initially the Identity matrix
 | |
| *
 | |
|                         IQEND = MAX( IQEND, J2 )
 | |
|                         I2 = MAX( 0, K-3 )
 | |
|                         IQAEND = 1 + I*KD
 | |
|                         IF( K.EQ.2 )
 | |
|      $                     IQAEND = IQAEND + KD
 | |
|                         IQAEND = MIN( IQAEND, IQEND )
 | |
|                         DO 170 J = J1, J2, KD1
 | |
|                            IBL = I - I2 / KDM1
 | |
|                            I2 = I2 + 1
 | |
|                            IQB = MAX( 1, J-IBL )
 | |
|                            NQ = 1 + IQAEND - IQB
 | |
|                            IQAEND = MIN( IQAEND+KD, IQEND )
 | |
|                            CALL SROT( NQ, Q( IQB, J-1 ), 1, Q( IQB, J ),
 | |
|      $                                1, D( J ), WORK( J ) )
 | |
|   170                   CONTINUE
 | |
|                      ELSE
 | |
| *
 | |
|                         DO 180 J = J1, J2, KD1
 | |
|                            CALL SROT( N, Q( 1, J-1 ), 1, Q( 1, J ), 1,
 | |
|      $                                D( J ), WORK( J ) )
 | |
|   180                   CONTINUE
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
|                   IF( J2+KDN.GT.N ) THEN
 | |
| *
 | |
| *                    adjust J2 to keep within the bounds of the matrix
 | |
| *
 | |
|                      NR = NR - 1
 | |
|                      J2 = J2 - KDN - 1
 | |
|                   END IF
 | |
| *
 | |
|                   DO 190 J = J1, J2, KD1
 | |
| *
 | |
| *                    create nonzero element a(j+kd,j-1) outside the
 | |
| *                    band and store it in WORK
 | |
| *
 | |
|                      WORK( J+KD ) = WORK( J )*AB( KD1, J )
 | |
|                      AB( KD1, J ) = D( J )*AB( KD1, J )
 | |
|   190             CONTINUE
 | |
|   200          CONTINUE
 | |
|   210       CONTINUE
 | |
|          END IF
 | |
| *
 | |
|          IF( KD.GT.0 ) THEN
 | |
| *
 | |
| *           copy off-diagonal elements to E
 | |
| *
 | |
|             DO 220 I = 1, N - 1
 | |
|                E( I ) = AB( 2, I )
 | |
|   220       CONTINUE
 | |
|          ELSE
 | |
| *
 | |
| *           set E to zero if original matrix was diagonal
 | |
| *
 | |
|             DO 230 I = 1, N - 1
 | |
|                E( I ) = ZERO
 | |
|   230       CONTINUE
 | |
|          END IF
 | |
| *
 | |
| *        copy diagonal elements to D
 | |
| *
 | |
|          DO 240 I = 1, N
 | |
|             D( I ) = AB( 1, I )
 | |
|   240    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SSBTRD
 | |
| *
 | |
|       END
 |