471 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			471 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SLASD3 finds all square roots of the roots of the secular equation, as defined by the values in D and Z, and then updates the singular vectors by matrix multiplication. Used by sbdsdc.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SLASD3 + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd3.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd3.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd3.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2,
 | |
| *                          LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z,
 | |
| *                          INFO )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR,
 | |
| *      $                   SQRE
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            CTOT( * ), IDXC( * )
 | |
| *       REAL               D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ),
 | |
| *      $                   U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
 | |
| *      $                   Z( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SLASD3 finds all the square roots of the roots of the secular
 | |
| *> equation, as defined by the values in D and Z.  It makes the
 | |
| *> appropriate calls to SLASD4 and then updates the singular
 | |
| *> vectors by matrix multiplication.
 | |
| *>
 | |
| *> This code makes very mild assumptions about floating point
 | |
| *> arithmetic. It will work on machines with a guard digit in
 | |
| *> add/subtract, or on those binary machines without guard digits
 | |
| *> which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
 | |
| *> It could conceivably fail on hexadecimal or decimal machines
 | |
| *> without guard digits, but we know of none.
 | |
| *>
 | |
| *> SLASD3 is called from SLASD1.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] NL
 | |
| *> \verbatim
 | |
| *>          NL is INTEGER
 | |
| *>         The row dimension of the upper block.  NL >= 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NR
 | |
| *> \verbatim
 | |
| *>          NR is INTEGER
 | |
| *>         The row dimension of the lower block.  NR >= 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SQRE
 | |
| *> \verbatim
 | |
| *>          SQRE is INTEGER
 | |
| *>         = 0: the lower block is an NR-by-NR square matrix.
 | |
| *>         = 1: the lower block is an NR-by-(NR+1) rectangular matrix.
 | |
| *>
 | |
| *>         The bidiagonal matrix has N = NL + NR + 1 rows and
 | |
| *>         M = N + SQRE >= N columns.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *>         The size of the secular equation, 1 =< K = < N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension(K)
 | |
| *>         On exit the square roots of the roots of the secular equation,
 | |
| *>         in ascending order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Q
 | |
| *> \verbatim
 | |
| *>          Q is REAL array,
 | |
| *>                     dimension at least (LDQ,K).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDQ
 | |
| *> \verbatim
 | |
| *>          LDQ is INTEGER
 | |
| *>         The leading dimension of the array Q.  LDQ >= K.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] DSIGMA
 | |
| *> \verbatim
 | |
| *>          DSIGMA is REAL array, dimension(K)
 | |
| *>         The first K elements of this array contain the old roots
 | |
| *>         of the deflated updating problem.  These are the poles
 | |
| *>         of the secular equation.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] U
 | |
| *> \verbatim
 | |
| *>          U is REAL array, dimension (LDU, N)
 | |
| *>         The last N - K columns of this matrix contain the deflated
 | |
| *>         left singular vectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU
 | |
| *> \verbatim
 | |
| *>          LDU is INTEGER
 | |
| *>         The leading dimension of the array U.  LDU >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] U2
 | |
| *> \verbatim
 | |
| *>          U2 is REAL array, dimension (LDU2, N)
 | |
| *>         The first K columns of this matrix contain the non-deflated
 | |
| *>         left singular vectors for the split problem.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU2
 | |
| *> \verbatim
 | |
| *>          LDU2 is INTEGER
 | |
| *>         The leading dimension of the array U2.  LDU2 >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] VT
 | |
| *> \verbatim
 | |
| *>          VT is REAL array, dimension (LDVT, M)
 | |
| *>         The last M - K columns of VT**T contain the deflated
 | |
| *>         right singular vectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVT
 | |
| *> \verbatim
 | |
| *>          LDVT is INTEGER
 | |
| *>         The leading dimension of the array VT.  LDVT >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] VT2
 | |
| *> \verbatim
 | |
| *>          VT2 is REAL array, dimension (LDVT2, N)
 | |
| *>         The first K columns of VT2**T contain the non-deflated
 | |
| *>         right singular vectors for the split problem.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVT2
 | |
| *> \verbatim
 | |
| *>          LDVT2 is INTEGER
 | |
| *>         The leading dimension of the array VT2.  LDVT2 >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IDXC
 | |
| *> \verbatim
 | |
| *>          IDXC is INTEGER array, dimension (N)
 | |
| *>         The permutation used to arrange the columns of U (and rows of
 | |
| *>         VT) into three groups:  the first group contains non-zero
 | |
| *>         entries only at and above (or before) NL +1; the second
 | |
| *>         contains non-zero entries only at and below (or after) NL+2;
 | |
| *>         and the third is dense. The first column of U and the row of
 | |
| *>         VT are treated separately, however.
 | |
| *>
 | |
| *>         The rows of the singular vectors found by SLASD4
 | |
| *>         must be likewise permuted before the matrix multiplies can
 | |
| *>         take place.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] CTOT
 | |
| *> \verbatim
 | |
| *>          CTOT is INTEGER array, dimension (4)
 | |
| *>         A count of the total number of the various types of columns
 | |
| *>         in U (or rows in VT), as described in IDXC. The fourth column
 | |
| *>         type is any column which has been deflated.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Z
 | |
| *> \verbatim
 | |
| *>          Z is REAL array, dimension (K)
 | |
| *>         The first K elements of this array contain the components
 | |
| *>         of the deflation-adjusted updating row vector.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>         = 0:  successful exit.
 | |
| *>         < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>         > 0:  if INFO = 1, a singular value did not converge
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup auxOTHERauxiliary
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Ming Gu and Huan Ren, Computer Science Division, University of
 | |
| *>     California at Berkeley, USA
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2,
 | |
|      $                   LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z,
 | |
|      $                   INFO )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR,
 | |
|      $                   SQRE
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            CTOT( * ), IDXC( * )
 | |
|       REAL               D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ),
 | |
|      $                   U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ),
 | |
|      $                   Z( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, ZERO, NEGONE
 | |
|       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0,
 | |
|      $                     NEGONE = -1.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            CTEMP, I, J, JC, KTEMP, M, N, NLP1, NLP2, NRP1
 | |
|       REAL               RHO, TEMP
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SLAMC3, SNRM2
 | |
|       EXTERNAL           SLAMC3, SNRM2
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SCOPY, SGEMM, SLACPY, SLASCL, SLASD4, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, SIGN, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
|       IF( NL.LT.1 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( NR.LT.1 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( ( SQRE.NE.1 ) .AND. ( SQRE.NE.0 ) ) THEN
 | |
|          INFO = -3
 | |
|       END IF
 | |
| *
 | |
|       N = NL + NR + 1
 | |
|       M = N + SQRE
 | |
|       NLP1 = NL + 1
 | |
|       NLP2 = NL + 2
 | |
| *
 | |
|       IF( ( K.LT.1 ) .OR. ( K.GT.N ) ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDQ.LT.K ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( LDU.LT.N ) THEN
 | |
|          INFO = -10
 | |
|       ELSE IF( LDU2.LT.N ) THEN
 | |
|          INFO = -12
 | |
|       ELSE IF( LDVT.LT.M ) THEN
 | |
|          INFO = -14
 | |
|       ELSE IF( LDVT2.LT.M ) THEN
 | |
|          INFO = -16
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SLASD3', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( K.EQ.1 ) THEN
 | |
|          D( 1 ) = ABS( Z( 1 ) )
 | |
|          CALL SCOPY( M, VT2( 1, 1 ), LDVT2, VT( 1, 1 ), LDVT )
 | |
|          IF( Z( 1 ).GT.ZERO ) THEN
 | |
|             CALL SCOPY( N, U2( 1, 1 ), 1, U( 1, 1 ), 1 )
 | |
|          ELSE
 | |
|             DO 10 I = 1, N
 | |
|                U( I, 1 ) = -U2( I, 1 )
 | |
|    10       CONTINUE
 | |
|          END IF
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can
 | |
| *     be computed with high relative accuracy (barring over/underflow).
 | |
| *     This is a problem on machines without a guard digit in
 | |
| *     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2).
 | |
| *     The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I),
 | |
| *     which on any of these machines zeros out the bottommost
 | |
| *     bit of DSIGMA(I) if it is 1; this makes the subsequent
 | |
| *     subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation
 | |
| *     occurs. On binary machines with a guard digit (almost all
 | |
| *     machines) it does not change DSIGMA(I) at all. On hexadecimal
 | |
| *     and decimal machines with a guard digit, it slightly
 | |
| *     changes the bottommost bits of DSIGMA(I). It does not account
 | |
| *     for hexadecimal or decimal machines without guard digits
 | |
| *     (we know of none). We use a subroutine call to compute
 | |
| *     2*DSIGMA(I) to prevent optimizing compilers from eliminating
 | |
| *     this code.
 | |
| *
 | |
|       DO 20 I = 1, K
 | |
|          DSIGMA( I ) = SLAMC3( DSIGMA( I ), DSIGMA( I ) ) - DSIGMA( I )
 | |
|    20 CONTINUE
 | |
| *
 | |
| *     Keep a copy of Z.
 | |
| *
 | |
|       CALL SCOPY( K, Z, 1, Q, 1 )
 | |
| *
 | |
| *     Normalize Z.
 | |
| *
 | |
|       RHO = SNRM2( K, Z, 1 )
 | |
|       CALL SLASCL( 'G', 0, 0, RHO, ONE, K, 1, Z, K, INFO )
 | |
|       RHO = RHO*RHO
 | |
| *
 | |
| *     Find the new singular values.
 | |
| *
 | |
|       DO 30 J = 1, K
 | |
|          CALL SLASD4( K, J, DSIGMA, Z, U( 1, J ), RHO, D( J ),
 | |
|      $                VT( 1, J ), INFO )
 | |
| *
 | |
| *        If the zero finder fails, the computation is terminated.
 | |
| *
 | |
|          IF( INFO.NE.0 ) THEN
 | |
|             RETURN
 | |
|          END IF
 | |
|    30 CONTINUE
 | |
| *
 | |
| *     Compute updated Z.
 | |
| *
 | |
|       DO 60 I = 1, K
 | |
|          Z( I ) = U( I, K )*VT( I, K )
 | |
|          DO 40 J = 1, I - 1
 | |
|             Z( I ) = Z( I )*( U( I, J )*VT( I, J ) /
 | |
|      $               ( DSIGMA( I )-DSIGMA( J ) ) /
 | |
|      $               ( DSIGMA( I )+DSIGMA( J ) ) )
 | |
|    40    CONTINUE
 | |
|          DO 50 J = I, K - 1
 | |
|             Z( I ) = Z( I )*( U( I, J )*VT( I, J ) /
 | |
|      $               ( DSIGMA( I )-DSIGMA( J+1 ) ) /
 | |
|      $               ( DSIGMA( I )+DSIGMA( J+1 ) ) )
 | |
|    50    CONTINUE
 | |
|          Z( I ) = SIGN( SQRT( ABS( Z( I ) ) ), Q( I, 1 ) )
 | |
|    60 CONTINUE
 | |
| *
 | |
| *     Compute left singular vectors of the modified diagonal matrix,
 | |
| *     and store related information for the right singular vectors.
 | |
| *
 | |
|       DO 90 I = 1, K
 | |
|          VT( 1, I ) = Z( 1 ) / U( 1, I ) / VT( 1, I )
 | |
|          U( 1, I ) = NEGONE
 | |
|          DO 70 J = 2, K
 | |
|             VT( J, I ) = Z( J ) / U( J, I ) / VT( J, I )
 | |
|             U( J, I ) = DSIGMA( J )*VT( J, I )
 | |
|    70    CONTINUE
 | |
|          TEMP = SNRM2( K, U( 1, I ), 1 )
 | |
|          Q( 1, I ) = U( 1, I ) / TEMP
 | |
|          DO 80 J = 2, K
 | |
|             JC = IDXC( J )
 | |
|             Q( J, I ) = U( JC, I ) / TEMP
 | |
|    80    CONTINUE
 | |
|    90 CONTINUE
 | |
| *
 | |
| *     Update the left singular vector matrix.
 | |
| *
 | |
|       IF( K.EQ.2 ) THEN
 | |
|          CALL SGEMM( 'N', 'N', N, K, K, ONE, U2, LDU2, Q, LDQ, ZERO, U,
 | |
|      $               LDU )
 | |
|          GO TO 100
 | |
|       END IF
 | |
|       IF( CTOT( 1 ).GT.0 ) THEN
 | |
|          CALL SGEMM( 'N', 'N', NL, K, CTOT( 1 ), ONE, U2( 1, 2 ), LDU2,
 | |
|      $               Q( 2, 1 ), LDQ, ZERO, U( 1, 1 ), LDU )
 | |
|          IF( CTOT( 3 ).GT.0 ) THEN
 | |
|             KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
 | |
|             CALL SGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ),
 | |
|      $                  LDU2, Q( KTEMP, 1 ), LDQ, ONE, U( 1, 1 ), LDU )
 | |
|          END IF
 | |
|       ELSE IF( CTOT( 3 ).GT.0 ) THEN
 | |
|          KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
 | |
|          CALL SGEMM( 'N', 'N', NL, K, CTOT( 3 ), ONE, U2( 1, KTEMP ),
 | |
|      $               LDU2, Q( KTEMP, 1 ), LDQ, ZERO, U( 1, 1 ), LDU )
 | |
|       ELSE
 | |
|          CALL SLACPY( 'F', NL, K, U2, LDU2, U, LDU )
 | |
|       END IF
 | |
|       CALL SCOPY( K, Q( 1, 1 ), LDQ, U( NLP1, 1 ), LDU )
 | |
|       KTEMP = 2 + CTOT( 1 )
 | |
|       CTEMP = CTOT( 2 ) + CTOT( 3 )
 | |
|       CALL SGEMM( 'N', 'N', NR, K, CTEMP, ONE, U2( NLP2, KTEMP ), LDU2,
 | |
|      $            Q( KTEMP, 1 ), LDQ, ZERO, U( NLP2, 1 ), LDU )
 | |
| *
 | |
| *     Generate the right singular vectors.
 | |
| *
 | |
|   100 CONTINUE
 | |
|       DO 120 I = 1, K
 | |
|          TEMP = SNRM2( K, VT( 1, I ), 1 )
 | |
|          Q( I, 1 ) = VT( 1, I ) / TEMP
 | |
|          DO 110 J = 2, K
 | |
|             JC = IDXC( J )
 | |
|             Q( I, J ) = VT( JC, I ) / TEMP
 | |
|   110    CONTINUE
 | |
|   120 CONTINUE
 | |
| *
 | |
| *     Update the right singular vector matrix.
 | |
| *
 | |
|       IF( K.EQ.2 ) THEN
 | |
|          CALL SGEMM( 'N', 'N', K, M, K, ONE, Q, LDQ, VT2, LDVT2, ZERO,
 | |
|      $               VT, LDVT )
 | |
|          RETURN
 | |
|       END IF
 | |
|       KTEMP = 1 + CTOT( 1 )
 | |
|       CALL SGEMM( 'N', 'N', K, NLP1, KTEMP, ONE, Q( 1, 1 ), LDQ,
 | |
|      $            VT2( 1, 1 ), LDVT2, ZERO, VT( 1, 1 ), LDVT )
 | |
|       KTEMP = 2 + CTOT( 1 ) + CTOT( 2 )
 | |
|       IF( KTEMP.LE.LDVT2 )
 | |
|      $   CALL SGEMM( 'N', 'N', K, NLP1, CTOT( 3 ), ONE, Q( 1, KTEMP ),
 | |
|      $               LDQ, VT2( KTEMP, 1 ), LDVT2, ONE, VT( 1, 1 ),
 | |
|      $               LDVT )
 | |
| *
 | |
|       KTEMP = CTOT( 1 ) + 1
 | |
|       NRP1 = NR + SQRE
 | |
|       IF( KTEMP.GT.1 ) THEN
 | |
|          DO 130 I = 1, K
 | |
|             Q( I, KTEMP ) = Q( I, 1 )
 | |
|   130    CONTINUE
 | |
|          DO 140 I = NLP2, M
 | |
|             VT2( KTEMP, I ) = VT2( 1, I )
 | |
|   140    CONTINUE
 | |
|       END IF
 | |
|       CTEMP = 1 + CTOT( 2 ) + CTOT( 3 )
 | |
|       CALL SGEMM( 'N', 'N', K, NRP1, CTEMP, ONE, Q( 1, KTEMP ), LDQ,
 | |
|      $            VT2( KTEMP, NLP2 ), LDVT2, ZERO, VT( 1, NLP2 ), LDVT )
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SLASD3
 | |
| *
 | |
|       END
 |