922 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			922 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DLAQR5 performs a single small-bulge multi-shift QR sweep.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DLAQR5 + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr5.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr5.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr5.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS,
 | |
| *                          SR, SI, H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U,
 | |
| *                          LDU, NV, WV, LDWV, NH, WH, LDWH )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV,
 | |
| *      $                   LDWH, LDWV, LDZ, N, NH, NSHFTS, NV
 | |
| *       LOGICAL            WANTT, WANTZ
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   H( LDH, * ), SI( * ), SR( * ), U( LDU, * ),
 | |
| *      $                   V( LDV, * ), WH( LDWH, * ), WV( LDWV, * ),
 | |
| *      $                   Z( LDZ, * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>    DLAQR5, called by DLAQR0, performs a
 | |
| *>    single small-bulge multi-shift QR sweep.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] WANTT
 | |
| *> \verbatim
 | |
| *>          WANTT is logical scalar
 | |
| *>             WANTT = .true. if the quasi-triangular Schur factor
 | |
| *>             is being computed.  WANTT is set to .false. otherwise.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] WANTZ
 | |
| *> \verbatim
 | |
| *>          WANTZ is logical scalar
 | |
| *>             WANTZ = .true. if the orthogonal Schur factor is being
 | |
| *>             computed.  WANTZ is set to .false. otherwise.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KACC22
 | |
| *> \verbatim
 | |
| *>          KACC22 is integer with value 0, 1, or 2.
 | |
| *>             Specifies the computation mode of far-from-diagonal
 | |
| *>             orthogonal updates.
 | |
| *>        = 0: DLAQR5 does not accumulate reflections and does not
 | |
| *>             use matrix-matrix multiply to update far-from-diagonal
 | |
| *>             matrix entries.
 | |
| *>        = 1: DLAQR5 accumulates reflections and uses matrix-matrix
 | |
| *>             multiply to update the far-from-diagonal matrix entries.
 | |
| *>        = 2: DLAQR5 accumulates reflections, uses matrix-matrix
 | |
| *>             multiply to update the far-from-diagonal matrix entries,
 | |
| *>             and takes advantage of 2-by-2 block structure during
 | |
| *>             matrix multiplies.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is integer scalar
 | |
| *>             N is the order of the Hessenberg matrix H upon which this
 | |
| *>             subroutine operates.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KTOP
 | |
| *> \verbatim
 | |
| *>          KTOP is integer scalar
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KBOT
 | |
| *> \verbatim
 | |
| *>          KBOT is integer scalar
 | |
| *>             These are the first and last rows and columns of an
 | |
| *>             isolated diagonal block upon which the QR sweep is to be
 | |
| *>             applied. It is assumed without a check that
 | |
| *>                       either KTOP = 1  or   H(KTOP,KTOP-1) = 0
 | |
| *>             and
 | |
| *>                       either KBOT = N  or   H(KBOT+1,KBOT) = 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NSHFTS
 | |
| *> \verbatim
 | |
| *>          NSHFTS is integer scalar
 | |
| *>             NSHFTS gives the number of simultaneous shifts.  NSHFTS
 | |
| *>             must be positive and even.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] SR
 | |
| *> \verbatim
 | |
| *>          SR is DOUBLE PRECISION array of size (NSHFTS)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] SI
 | |
| *> \verbatim
 | |
| *>          SI is DOUBLE PRECISION array of size (NSHFTS)
 | |
| *>             SR contains the real parts and SI contains the imaginary
 | |
| *>             parts of the NSHFTS shifts of origin that define the
 | |
| *>             multi-shift QR sweep.  On output SR and SI may be
 | |
| *>             reordered.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] H
 | |
| *> \verbatim
 | |
| *>          H is DOUBLE PRECISION array of size (LDH,N)
 | |
| *>             On input H contains a Hessenberg matrix.  On output a
 | |
| *>             multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied
 | |
| *>             to the isolated diagonal block in rows and columns KTOP
 | |
| *>             through KBOT.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDH
 | |
| *> \verbatim
 | |
| *>          LDH is integer scalar
 | |
| *>             LDH is the leading dimension of H just as declared in the
 | |
| *>             calling procedure.  LDH.GE.MAX(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ILOZ
 | |
| *> \verbatim
 | |
| *>          ILOZ is INTEGER
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IHIZ
 | |
| *> \verbatim
 | |
| *>          IHIZ is INTEGER
 | |
| *>             Specify the rows of Z to which transformations must be
 | |
| *>             applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. IHIZ .LE. N
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Z
 | |
| *> \verbatim
 | |
| *>          Z is DOUBLE PRECISION array of size (LDZ,IHI)
 | |
| *>             If WANTZ = .TRUE., then the QR Sweep orthogonal
 | |
| *>             similarity transformation is accumulated into
 | |
| *>             Z(ILOZ:IHIZ,ILO:IHI) from the right.
 | |
| *>             If WANTZ = .FALSE., then Z is unreferenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is integer scalar
 | |
| *>             LDA is the leading dimension of Z just as declared in
 | |
| *>             the calling procedure. LDZ.GE.N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] V
 | |
| *> \verbatim
 | |
| *>          V is DOUBLE PRECISION array of size (LDV,NSHFTS/2)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDV
 | |
| *> \verbatim
 | |
| *>          LDV is integer scalar
 | |
| *>             LDV is the leading dimension of V as declared in the
 | |
| *>             calling procedure.  LDV.GE.3.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] U
 | |
| *> \verbatim
 | |
| *>          U is DOUBLE PRECISION array of size
 | |
| *>             (LDU,3*NSHFTS-3)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDU
 | |
| *> \verbatim
 | |
| *>          LDU is integer scalar
 | |
| *>             LDU is the leading dimension of U just as declared in the
 | |
| *>             in the calling subroutine.  LDU.GE.3*NSHFTS-3.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NH
 | |
| *> \verbatim
 | |
| *>          NH is integer scalar
 | |
| *>             NH is the number of columns in array WH available for
 | |
| *>             workspace. NH.GE.1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WH
 | |
| *> \verbatim
 | |
| *>          WH is DOUBLE PRECISION array of size (LDWH,NH)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDWH
 | |
| *> \verbatim
 | |
| *>          LDWH is integer scalar
 | |
| *>             Leading dimension of WH just as declared in the
 | |
| *>             calling procedure.  LDWH.GE.3*NSHFTS-3.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NV
 | |
| *> \verbatim
 | |
| *>          NV is integer scalar
 | |
| *>             NV is the number of rows in WV agailable for workspace.
 | |
| *>             NV.GE.1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WV
 | |
| *> \verbatim
 | |
| *>          WV is DOUBLE PRECISION array of size
 | |
| *>             (LDWV,3*NSHFTS-3)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDWV
 | |
| *> \verbatim
 | |
| *>          LDWV is integer scalar
 | |
| *>             LDWV is the leading dimension of WV as declared in the
 | |
| *>             in the calling subroutine.  LDWV.GE.NV.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup doubleOTHERauxiliary
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>       Karen Braman and Ralph Byers, Department of Mathematics,
 | |
| *>       University of Kansas, USA
 | |
| *
 | |
| *> \par References:
 | |
| *  ================
 | |
| *>
 | |
| *>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
 | |
| *>       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
 | |
| *>       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
 | |
| *>       929--947, 2002.
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS,
 | |
|      $                   SR, SI, H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U,
 | |
|      $                   LDU, NV, WV, LDWV, NH, WH, LDWH )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV,
 | |
|      $                   LDWH, LDWV, LDZ, N, NH, NSHFTS, NV
 | |
|       LOGICAL            WANTT, WANTZ
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   H( LDH, * ), SI( * ), SR( * ), U( LDU, * ),
 | |
|      $                   V( LDV, * ), WH( LDWH, * ), WV( LDWV, * ),
 | |
|      $                   Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  ================================================================
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       DOUBLE PRECISION   ALPHA, BETA, H11, H12, H21, H22, REFSUM,
 | |
|      $                   SAFMAX, SAFMIN, SCL, SMLNUM, SWAP, TST1, TST2,
 | |
|      $                   ULP
 | |
|       INTEGER            I, I2, I4, INCOL, J, J2, J4, JBOT, JCOL, JLEN,
 | |
|      $                   JROW, JTOP, K, K1, KDU, KMS, KNZ, KRCOL, KZS,
 | |
|      $                   M, M22, MBOT, MEND, MSTART, MTOP, NBMPS, NDCOL,
 | |
|      $                   NS, NU
 | |
|       LOGICAL            ACCUM, BLK22, BMP22
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       DOUBLE PRECISION   DLAMCH
 | |
|       EXTERNAL           DLAMCH
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
| *
 | |
|       INTRINSIC          ABS, DBLE, MAX, MIN, MOD
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       DOUBLE PRECISION   VT( 3 )
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DGEMM, DLABAD, DLACPY, DLAQR1, DLARFG, DLASET,
 | |
|      $                   DTRMM
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     ==== If there are no shifts, then there is nothing to do. ====
 | |
| *
 | |
|       IF( NSHFTS.LT.2 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     ==== If the active block is empty or 1-by-1, then there
 | |
| *     .    is nothing to do. ====
 | |
| *
 | |
|       IF( KTOP.GE.KBOT )
 | |
|      $   RETURN
 | |
| *
 | |
| *     ==== Shuffle shifts into pairs of real shifts and pairs
 | |
| *     .    of complex conjugate shifts assuming complex
 | |
| *     .    conjugate shifts are already adjacent to one
 | |
| *     .    another. ====
 | |
| *
 | |
|       DO 10 I = 1, NSHFTS - 2, 2
 | |
|          IF( SI( I ).NE.-SI( I+1 ) ) THEN
 | |
| *
 | |
|             SWAP = SR( I )
 | |
|             SR( I ) = SR( I+1 )
 | |
|             SR( I+1 ) = SR( I+2 )
 | |
|             SR( I+2 ) = SWAP
 | |
| *
 | |
|             SWAP = SI( I )
 | |
|             SI( I ) = SI( I+1 )
 | |
|             SI( I+1 ) = SI( I+2 )
 | |
|             SI( I+2 ) = SWAP
 | |
|          END IF
 | |
|    10 CONTINUE
 | |
| *
 | |
| *     ==== NSHFTS is supposed to be even, but if it is odd,
 | |
| *     .    then simply reduce it by one.  The shuffle above
 | |
| *     .    ensures that the dropped shift is real and that
 | |
| *     .    the remaining shifts are paired. ====
 | |
| *
 | |
|       NS = NSHFTS - MOD( NSHFTS, 2 )
 | |
| *
 | |
| *     ==== Machine constants for deflation ====
 | |
| *
 | |
|       SAFMIN = DLAMCH( 'SAFE MINIMUM' )
 | |
|       SAFMAX = ONE / SAFMIN
 | |
|       CALL DLABAD( SAFMIN, SAFMAX )
 | |
|       ULP = DLAMCH( 'PRECISION' )
 | |
|       SMLNUM = SAFMIN*( DBLE( N ) / ULP )
 | |
| *
 | |
| *     ==== Use accumulated reflections to update far-from-diagonal
 | |
| *     .    entries ? ====
 | |
| *
 | |
|       ACCUM = ( KACC22.EQ.1 ) .OR. ( KACC22.EQ.2 )
 | |
| *
 | |
| *     ==== If so, exploit the 2-by-2 block structure? ====
 | |
| *
 | |
|       BLK22 = ( NS.GT.2 ) .AND. ( KACC22.EQ.2 )
 | |
| *
 | |
| *     ==== clear trash ====
 | |
| *
 | |
|       IF( KTOP+2.LE.KBOT )
 | |
|      $   H( KTOP+2, KTOP ) = ZERO
 | |
| *
 | |
| *     ==== NBMPS = number of 2-shift bulges in the chain ====
 | |
| *
 | |
|       NBMPS = NS / 2
 | |
| *
 | |
| *     ==== KDU = width of slab ====
 | |
| *
 | |
|       KDU = 6*NBMPS - 3
 | |
| *
 | |
| *     ==== Create and chase chains of NBMPS bulges ====
 | |
| *
 | |
|       DO 220 INCOL = 3*( 1-NBMPS ) + KTOP - 1, KBOT - 2, 3*NBMPS - 2
 | |
|          NDCOL = INCOL + KDU
 | |
|          IF( ACCUM )
 | |
|      $      CALL DLASET( 'ALL', KDU, KDU, ZERO, ONE, U, LDU )
 | |
| *
 | |
| *        ==== Near-the-diagonal bulge chase.  The following loop
 | |
| *        .    performs the near-the-diagonal part of a small bulge
 | |
| *        .    multi-shift QR sweep.  Each 6*NBMPS-2 column diagonal
 | |
| *        .    chunk extends from column INCOL to column NDCOL
 | |
| *        .    (including both column INCOL and column NDCOL). The
 | |
| *        .    following loop chases a 3*NBMPS column long chain of
 | |
| *        .    NBMPS bulges 3*NBMPS-2 columns to the right.  (INCOL
 | |
| *        .    may be less than KTOP and and NDCOL may be greater than
 | |
| *        .    KBOT indicating phantom columns from which to chase
 | |
| *        .    bulges before they are actually introduced or to which
 | |
| *        .    to chase bulges beyond column KBOT.)  ====
 | |
| *
 | |
|          DO 150 KRCOL = INCOL, MIN( INCOL+3*NBMPS-3, KBOT-2 )
 | |
| *
 | |
| *           ==== Bulges number MTOP to MBOT are active double implicit
 | |
| *           .    shift bulges.  There may or may not also be small
 | |
| *           .    2-by-2 bulge, if there is room.  The inactive bulges
 | |
| *           .    (if any) must wait until the active bulges have moved
 | |
| *           .    down the diagonal to make room.  The phantom matrix
 | |
| *           .    paradigm described above helps keep track.  ====
 | |
| *
 | |
|             MTOP = MAX( 1, ( ( KTOP-1 )-KRCOL+2 ) / 3+1 )
 | |
|             MBOT = MIN( NBMPS, ( KBOT-KRCOL ) / 3 )
 | |
|             M22 = MBOT + 1
 | |
|             BMP22 = ( MBOT.LT.NBMPS ) .AND. ( KRCOL+3*( M22-1 ) ).EQ.
 | |
|      $              ( KBOT-2 )
 | |
| *
 | |
| *           ==== Generate reflections to chase the chain right
 | |
| *           .    one column.  (The minimum value of K is KTOP-1.) ====
 | |
| *
 | |
|             DO 20 M = MTOP, MBOT
 | |
|                K = KRCOL + 3*( M-1 )
 | |
|                IF( K.EQ.KTOP-1 ) THEN
 | |
|                   CALL DLAQR1( 3, H( KTOP, KTOP ), LDH, SR( 2*M-1 ),
 | |
|      $                         SI( 2*M-1 ), SR( 2*M ), SI( 2*M ),
 | |
|      $                         V( 1, M ) )
 | |
|                   ALPHA = V( 1, M )
 | |
|                   CALL DLARFG( 3, ALPHA, V( 2, M ), 1, V( 1, M ) )
 | |
|                ELSE
 | |
|                   BETA = H( K+1, K )
 | |
|                   V( 2, M ) = H( K+2, K )
 | |
|                   V( 3, M ) = H( K+3, K )
 | |
|                   CALL DLARFG( 3, BETA, V( 2, M ), 1, V( 1, M ) )
 | |
| *
 | |
| *                 ==== A Bulge may collapse because of vigilant
 | |
| *                 .    deflation or destructive underflow.  In the
 | |
| *                 .    underflow case, try the two-small-subdiagonals
 | |
| *                 .    trick to try to reinflate the bulge.  ====
 | |
| *
 | |
|                   IF( H( K+3, K ).NE.ZERO .OR. H( K+3, K+1 ).NE.
 | |
|      $                ZERO .OR. H( K+3, K+2 ).EQ.ZERO ) THEN
 | |
| *
 | |
| *                    ==== Typical case: not collapsed (yet). ====
 | |
| *
 | |
|                      H( K+1, K ) = BETA
 | |
|                      H( K+2, K ) = ZERO
 | |
|                      H( K+3, K ) = ZERO
 | |
|                   ELSE
 | |
| *
 | |
| *                    ==== Atypical case: collapsed.  Attempt to
 | |
| *                    .    reintroduce ignoring H(K+1,K) and H(K+2,K).
 | |
| *                    .    If the fill resulting from the new
 | |
| *                    .    reflector is too large, then abandon it.
 | |
| *                    .    Otherwise, use the new one. ====
 | |
| *
 | |
|                      CALL DLAQR1( 3, H( K+1, K+1 ), LDH, SR( 2*M-1 ),
 | |
|      $                            SI( 2*M-1 ), SR( 2*M ), SI( 2*M ),
 | |
|      $                            VT )
 | |
|                      ALPHA = VT( 1 )
 | |
|                      CALL DLARFG( 3, ALPHA, VT( 2 ), 1, VT( 1 ) )
 | |
|                      REFSUM = VT( 1 )*( H( K+1, K )+VT( 2 )*
 | |
|      $                        H( K+2, K ) )
 | |
| *
 | |
|                      IF( ABS( H( K+2, K )-REFSUM*VT( 2 ) )+
 | |
|      $                   ABS( REFSUM*VT( 3 ) ).GT.ULP*
 | |
|      $                   ( ABS( H( K, K ) )+ABS( H( K+1,
 | |
|      $                   K+1 ) )+ABS( H( K+2, K+2 ) ) ) ) THEN
 | |
| *
 | |
| *                       ==== Starting a new bulge here would
 | |
| *                       .    create non-negligible fill.  Use
 | |
| *                       .    the old one with trepidation. ====
 | |
| *
 | |
|                         H( K+1, K ) = BETA
 | |
|                         H( K+2, K ) = ZERO
 | |
|                         H( K+3, K ) = ZERO
 | |
|                      ELSE
 | |
| *
 | |
| *                       ==== Stating a new bulge here would
 | |
| *                       .    create only negligible fill.
 | |
| *                       .    Replace the old reflector with
 | |
| *                       .    the new one. ====
 | |
| *
 | |
|                         H( K+1, K ) = H( K+1, K ) - REFSUM
 | |
|                         H( K+2, K ) = ZERO
 | |
|                         H( K+3, K ) = ZERO
 | |
|                         V( 1, M ) = VT( 1 )
 | |
|                         V( 2, M ) = VT( 2 )
 | |
|                         V( 3, M ) = VT( 3 )
 | |
|                      END IF
 | |
|                   END IF
 | |
|                END IF
 | |
|    20       CONTINUE
 | |
| *
 | |
| *           ==== Generate a 2-by-2 reflection, if needed. ====
 | |
| *
 | |
|             K = KRCOL + 3*( M22-1 )
 | |
|             IF( BMP22 ) THEN
 | |
|                IF( K.EQ.KTOP-1 ) THEN
 | |
|                   CALL DLAQR1( 2, H( K+1, K+1 ), LDH, SR( 2*M22-1 ),
 | |
|      $                         SI( 2*M22-1 ), SR( 2*M22 ), SI( 2*M22 ),
 | |
|      $                         V( 1, M22 ) )
 | |
|                   BETA = V( 1, M22 )
 | |
|                   CALL DLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) )
 | |
|                ELSE
 | |
|                   BETA = H( K+1, K )
 | |
|                   V( 2, M22 ) = H( K+2, K )
 | |
|                   CALL DLARFG( 2, BETA, V( 2, M22 ), 1, V( 1, M22 ) )
 | |
|                   H( K+1, K ) = BETA
 | |
|                   H( K+2, K ) = ZERO
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
| *           ==== Multiply H by reflections from the left ====
 | |
| *
 | |
|             IF( ACCUM ) THEN
 | |
|                JBOT = MIN( NDCOL, KBOT )
 | |
|             ELSE IF( WANTT ) THEN
 | |
|                JBOT = N
 | |
|             ELSE
 | |
|                JBOT = KBOT
 | |
|             END IF
 | |
|             DO 40 J = MAX( KTOP, KRCOL ), JBOT
 | |
|                MEND = MIN( MBOT, ( J-KRCOL+2 ) / 3 )
 | |
|                DO 30 M = MTOP, MEND
 | |
|                   K = KRCOL + 3*( M-1 )
 | |
|                   REFSUM = V( 1, M )*( H( K+1, J )+V( 2, M )*
 | |
|      $                     H( K+2, J )+V( 3, M )*H( K+3, J ) )
 | |
|                   H( K+1, J ) = H( K+1, J ) - REFSUM
 | |
|                   H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M )
 | |
|                   H( K+3, J ) = H( K+3, J ) - REFSUM*V( 3, M )
 | |
|    30          CONTINUE
 | |
|    40       CONTINUE
 | |
|             IF( BMP22 ) THEN
 | |
|                K = KRCOL + 3*( M22-1 )
 | |
|                DO 50 J = MAX( K+1, KTOP ), JBOT
 | |
|                   REFSUM = V( 1, M22 )*( H( K+1, J )+V( 2, M22 )*
 | |
|      $                     H( K+2, J ) )
 | |
|                   H( K+1, J ) = H( K+1, J ) - REFSUM
 | |
|                   H( K+2, J ) = H( K+2, J ) - REFSUM*V( 2, M22 )
 | |
|    50          CONTINUE
 | |
|             END IF
 | |
| *
 | |
| *           ==== Multiply H by reflections from the right.
 | |
| *           .    Delay filling in the last row until the
 | |
| *           .    vigilant deflation check is complete. ====
 | |
| *
 | |
|             IF( ACCUM ) THEN
 | |
|                JTOP = MAX( KTOP, INCOL )
 | |
|             ELSE IF( WANTT ) THEN
 | |
|                JTOP = 1
 | |
|             ELSE
 | |
|                JTOP = KTOP
 | |
|             END IF
 | |
|             DO 90 M = MTOP, MBOT
 | |
|                IF( V( 1, M ).NE.ZERO ) THEN
 | |
|                   K = KRCOL + 3*( M-1 )
 | |
|                   DO 60 J = JTOP, MIN( KBOT, K+3 )
 | |
|                      REFSUM = V( 1, M )*( H( J, K+1 )+V( 2, M )*
 | |
|      $                        H( J, K+2 )+V( 3, M )*H( J, K+3 ) )
 | |
|                      H( J, K+1 ) = H( J, K+1 ) - REFSUM
 | |
|                      H( J, K+2 ) = H( J, K+2 ) - REFSUM*V( 2, M )
 | |
|                      H( J, K+3 ) = H( J, K+3 ) - REFSUM*V( 3, M )
 | |
|    60             CONTINUE
 | |
| *
 | |
|                   IF( ACCUM ) THEN
 | |
| *
 | |
| *                    ==== Accumulate U. (If necessary, update Z later
 | |
| *                    .    with with an efficient matrix-matrix
 | |
| *                    .    multiply.) ====
 | |
| *
 | |
|                      KMS = K - INCOL
 | |
|                      DO 70 J = MAX( 1, KTOP-INCOL ), KDU
 | |
|                         REFSUM = V( 1, M )*( U( J, KMS+1 )+V( 2, M )*
 | |
|      $                           U( J, KMS+2 )+V( 3, M )*U( J, KMS+3 ) )
 | |
|                         U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM
 | |
|                         U( J, KMS+2 ) = U( J, KMS+2 ) - REFSUM*V( 2, M )
 | |
|                         U( J, KMS+3 ) = U( J, KMS+3 ) - REFSUM*V( 3, M )
 | |
|    70                CONTINUE
 | |
|                   ELSE IF( WANTZ ) THEN
 | |
| *
 | |
| *                    ==== U is not accumulated, so update Z
 | |
| *                    .    now by multiplying by reflections
 | |
| *                    .    from the right. ====
 | |
| *
 | |
|                      DO 80 J = ILOZ, IHIZ
 | |
|                         REFSUM = V( 1, M )*( Z( J, K+1 )+V( 2, M )*
 | |
|      $                           Z( J, K+2 )+V( 3, M )*Z( J, K+3 ) )
 | |
|                         Z( J, K+1 ) = Z( J, K+1 ) - REFSUM
 | |
|                         Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*V( 2, M )
 | |
|                         Z( J, K+3 ) = Z( J, K+3 ) - REFSUM*V( 3, M )
 | |
|    80                CONTINUE
 | |
|                   END IF
 | |
|                END IF
 | |
|    90       CONTINUE
 | |
| *
 | |
| *           ==== Special case: 2-by-2 reflection (if needed) ====
 | |
| *
 | |
|             K = KRCOL + 3*( M22-1 )
 | |
|             IF( BMP22 ) THEN
 | |
|                IF ( V( 1, M22 ).NE.ZERO ) THEN
 | |
|                   DO 100 J = JTOP, MIN( KBOT, K+3 )
 | |
|                      REFSUM = V( 1, M22 )*( H( J, K+1 )+V( 2, M22 )*
 | |
|      $                        H( J, K+2 ) )
 | |
|                      H( J, K+1 ) = H( J, K+1 ) - REFSUM
 | |
|                      H( J, K+2 ) = H( J, K+2 ) - REFSUM*V( 2, M22 )
 | |
|   100             CONTINUE
 | |
| *
 | |
|                   IF( ACCUM ) THEN
 | |
|                      KMS = K - INCOL
 | |
|                      DO 110 J = MAX( 1, KTOP-INCOL ), KDU
 | |
|                         REFSUM = V( 1, M22 )*( U( J, KMS+1 )+
 | |
|      $                           V( 2, M22 )*U( J, KMS+2 ) )
 | |
|                         U( J, KMS+1 ) = U( J, KMS+1 ) - REFSUM
 | |
|                         U( J, KMS+2 ) = U( J, KMS+2 ) -
 | |
|      $                                  REFSUM*V( 2, M22 )
 | |
|   110             CONTINUE
 | |
|                   ELSE IF( WANTZ ) THEN
 | |
|                      DO 120 J = ILOZ, IHIZ
 | |
|                         REFSUM = V( 1, M22 )*( Z( J, K+1 )+V( 2, M22 )*
 | |
|      $                           Z( J, K+2 ) )
 | |
|                         Z( J, K+1 ) = Z( J, K+1 ) - REFSUM
 | |
|                         Z( J, K+2 ) = Z( J, K+2 ) - REFSUM*V( 2, M22 )
 | |
|   120                CONTINUE
 | |
|                   END IF
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
| *           ==== Vigilant deflation check ====
 | |
| *
 | |
|             MSTART = MTOP
 | |
|             IF( KRCOL+3*( MSTART-1 ).LT.KTOP )
 | |
|      $         MSTART = MSTART + 1
 | |
|             MEND = MBOT
 | |
|             IF( BMP22 )
 | |
|      $         MEND = MEND + 1
 | |
|             IF( KRCOL.EQ.KBOT-2 )
 | |
|      $         MEND = MEND + 1
 | |
|             DO 130 M = MSTART, MEND
 | |
|                K = MIN( KBOT-1, KRCOL+3*( M-1 ) )
 | |
| *
 | |
| *              ==== The following convergence test requires that
 | |
| *              .    the tradition small-compared-to-nearby-diagonals
 | |
| *              .    criterion and the Ahues & Tisseur (LAWN 122, 1997)
 | |
| *              .    criteria both be satisfied.  The latter improves
 | |
| *              .    accuracy in some examples. Falling back on an
 | |
| *              .    alternate convergence criterion when TST1 or TST2
 | |
| *              .    is zero (as done here) is traditional but probably
 | |
| *              .    unnecessary. ====
 | |
| *
 | |
|                IF( H( K+1, K ).NE.ZERO ) THEN
 | |
|                   TST1 = ABS( H( K, K ) ) + ABS( H( K+1, K+1 ) )
 | |
|                   IF( TST1.EQ.ZERO ) THEN
 | |
|                      IF( K.GE.KTOP+1 )
 | |
|      $                  TST1 = TST1 + ABS( H( K, K-1 ) )
 | |
|                      IF( K.GE.KTOP+2 )
 | |
|      $                  TST1 = TST1 + ABS( H( K, K-2 ) )
 | |
|                      IF( K.GE.KTOP+3 )
 | |
|      $                  TST1 = TST1 + ABS( H( K, K-3 ) )
 | |
|                      IF( K.LE.KBOT-2 )
 | |
|      $                  TST1 = TST1 + ABS( H( K+2, K+1 ) )
 | |
|                      IF( K.LE.KBOT-3 )
 | |
|      $                  TST1 = TST1 + ABS( H( K+3, K+1 ) )
 | |
|                      IF( K.LE.KBOT-4 )
 | |
|      $                  TST1 = TST1 + ABS( H( K+4, K+1 ) )
 | |
|                   END IF
 | |
|                   IF( ABS( H( K+1, K ) ).LE.MAX( SMLNUM, ULP*TST1 ) )
 | |
|      $                 THEN
 | |
|                      H12 = MAX( ABS( H( K+1, K ) ), ABS( H( K, K+1 ) ) )
 | |
|                      H21 = MIN( ABS( H( K+1, K ) ), ABS( H( K, K+1 ) ) )
 | |
|                      H11 = MAX( ABS( H( K+1, K+1 ) ),
 | |
|      $                     ABS( H( K, K )-H( K+1, K+1 ) ) )
 | |
|                      H22 = MIN( ABS( H( K+1, K+1 ) ),
 | |
|      $                     ABS( H( K, K )-H( K+1, K+1 ) ) )
 | |
|                      SCL = H11 + H12
 | |
|                      TST2 = H22*( H11 / SCL )
 | |
| *
 | |
|                      IF( TST2.EQ.ZERO .OR. H21*( H12 / SCL ).LE.
 | |
|      $                   MAX( SMLNUM, ULP*TST2 ) )H( K+1, K ) = ZERO
 | |
|                   END IF
 | |
|                END IF
 | |
|   130       CONTINUE
 | |
| *
 | |
| *           ==== Fill in the last row of each bulge. ====
 | |
| *
 | |
|             MEND = MIN( NBMPS, ( KBOT-KRCOL-1 ) / 3 )
 | |
|             DO 140 M = MTOP, MEND
 | |
|                K = KRCOL + 3*( M-1 )
 | |
|                REFSUM = V( 1, M )*V( 3, M )*H( K+4, K+3 )
 | |
|                H( K+4, K+1 ) = -REFSUM
 | |
|                H( K+4, K+2 ) = -REFSUM*V( 2, M )
 | |
|                H( K+4, K+3 ) = H( K+4, K+3 ) - REFSUM*V( 3, M )
 | |
|   140       CONTINUE
 | |
| *
 | |
| *           ==== End of near-the-diagonal bulge chase. ====
 | |
| *
 | |
|   150    CONTINUE
 | |
| *
 | |
| *        ==== Use U (if accumulated) to update far-from-diagonal
 | |
| *        .    entries in H.  If required, use U to update Z as
 | |
| *        .    well. ====
 | |
| *
 | |
|          IF( ACCUM ) THEN
 | |
|             IF( WANTT ) THEN
 | |
|                JTOP = 1
 | |
|                JBOT = N
 | |
|             ELSE
 | |
|                JTOP = KTOP
 | |
|                JBOT = KBOT
 | |
|             END IF
 | |
|             IF( ( .NOT.BLK22 ) .OR. ( INCOL.LT.KTOP ) .OR.
 | |
|      $          ( NDCOL.GT.KBOT ) .OR. ( NS.LE.2 ) ) THEN
 | |
| *
 | |
| *              ==== Updates not exploiting the 2-by-2 block
 | |
| *              .    structure of U.  K1 and NU keep track of
 | |
| *              .    the location and size of U in the special
 | |
| *              .    cases of introducing bulges and chasing
 | |
| *              .    bulges off the bottom.  In these special
 | |
| *              .    cases and in case the number of shifts
 | |
| *              .    is NS = 2, there is no 2-by-2 block
 | |
| *              .    structure to exploit.  ====
 | |
| *
 | |
|                K1 = MAX( 1, KTOP-INCOL )
 | |
|                NU = ( KDU-MAX( 0, NDCOL-KBOT ) ) - K1 + 1
 | |
| *
 | |
| *              ==== Horizontal Multiply ====
 | |
| *
 | |
|                DO 160 JCOL = MIN( NDCOL, KBOT ) + 1, JBOT, NH
 | |
|                   JLEN = MIN( NH, JBOT-JCOL+1 )
 | |
|                   CALL DGEMM( 'C', 'N', NU, JLEN, NU, ONE, U( K1, K1 ),
 | |
|      $                        LDU, H( INCOL+K1, JCOL ), LDH, ZERO, WH,
 | |
|      $                        LDWH )
 | |
|                   CALL DLACPY( 'ALL', NU, JLEN, WH, LDWH,
 | |
|      $                         H( INCOL+K1, JCOL ), LDH )
 | |
|   160          CONTINUE
 | |
| *
 | |
| *              ==== Vertical multiply ====
 | |
| *
 | |
|                DO 170 JROW = JTOP, MAX( KTOP, INCOL ) - 1, NV
 | |
|                   JLEN = MIN( NV, MAX( KTOP, INCOL )-JROW )
 | |
|                   CALL DGEMM( 'N', 'N', JLEN, NU, NU, ONE,
 | |
|      $                        H( JROW, INCOL+K1 ), LDH, U( K1, K1 ),
 | |
|      $                        LDU, ZERO, WV, LDWV )
 | |
|                   CALL DLACPY( 'ALL', JLEN, NU, WV, LDWV,
 | |
|      $                         H( JROW, INCOL+K1 ), LDH )
 | |
|   170          CONTINUE
 | |
| *
 | |
| *              ==== Z multiply (also vertical) ====
 | |
| *
 | |
|                IF( WANTZ ) THEN
 | |
|                   DO 180 JROW = ILOZ, IHIZ, NV
 | |
|                      JLEN = MIN( NV, IHIZ-JROW+1 )
 | |
|                      CALL DGEMM( 'N', 'N', JLEN, NU, NU, ONE,
 | |
|      $                           Z( JROW, INCOL+K1 ), LDZ, U( K1, K1 ),
 | |
|      $                           LDU, ZERO, WV, LDWV )
 | |
|                      CALL DLACPY( 'ALL', JLEN, NU, WV, LDWV,
 | |
|      $                            Z( JROW, INCOL+K1 ), LDZ )
 | |
|   180             CONTINUE
 | |
|                END IF
 | |
|             ELSE
 | |
| *
 | |
| *              ==== Updates exploiting U's 2-by-2 block structure.
 | |
| *              .    (I2, I4, J2, J4 are the last rows and columns
 | |
| *              .    of the blocks.) ====
 | |
| *
 | |
|                I2 = ( KDU+1 ) / 2
 | |
|                I4 = KDU
 | |
|                J2 = I4 - I2
 | |
|                J4 = KDU
 | |
| *
 | |
| *              ==== KZS and KNZ deal with the band of zeros
 | |
| *              .    along the diagonal of one of the triangular
 | |
| *              .    blocks. ====
 | |
| *
 | |
|                KZS = ( J4-J2 ) - ( NS+1 )
 | |
|                KNZ = NS + 1
 | |
| *
 | |
| *              ==== Horizontal multiply ====
 | |
| *
 | |
|                DO 190 JCOL = MIN( NDCOL, KBOT ) + 1, JBOT, NH
 | |
|                   JLEN = MIN( NH, JBOT-JCOL+1 )
 | |
| *
 | |
| *                 ==== Copy bottom of H to top+KZS of scratch ====
 | |
| *                  (The first KZS rows get multiplied by zero.) ====
 | |
| *
 | |
|                   CALL DLACPY( 'ALL', KNZ, JLEN, H( INCOL+1+J2, JCOL ),
 | |
|      $                         LDH, WH( KZS+1, 1 ), LDWH )
 | |
| *
 | |
| *                 ==== Multiply by U21**T ====
 | |
| *
 | |
|                   CALL DLASET( 'ALL', KZS, JLEN, ZERO, ZERO, WH, LDWH )
 | |
|                   CALL DTRMM( 'L', 'U', 'C', 'N', KNZ, JLEN, ONE,
 | |
|      $                        U( J2+1, 1+KZS ), LDU, WH( KZS+1, 1 ),
 | |
|      $                        LDWH )
 | |
| *
 | |
| *                 ==== Multiply top of H by U11**T ====
 | |
| *
 | |
|                   CALL DGEMM( 'C', 'N', I2, JLEN, J2, ONE, U, LDU,
 | |
|      $                        H( INCOL+1, JCOL ), LDH, ONE, WH, LDWH )
 | |
| *
 | |
| *                 ==== Copy top of H to bottom of WH ====
 | |
| *
 | |
|                   CALL DLACPY( 'ALL', J2, JLEN, H( INCOL+1, JCOL ), LDH,
 | |
|      $                         WH( I2+1, 1 ), LDWH )
 | |
| *
 | |
| *                 ==== Multiply by U21**T ====
 | |
| *
 | |
|                   CALL DTRMM( 'L', 'L', 'C', 'N', J2, JLEN, ONE,
 | |
|      $                        U( 1, I2+1 ), LDU, WH( I2+1, 1 ), LDWH )
 | |
| *
 | |
| *                 ==== Multiply by U22 ====
 | |
| *
 | |
|                   CALL DGEMM( 'C', 'N', I4-I2, JLEN, J4-J2, ONE,
 | |
|      $                        U( J2+1, I2+1 ), LDU,
 | |
|      $                        H( INCOL+1+J2, JCOL ), LDH, ONE,
 | |
|      $                        WH( I2+1, 1 ), LDWH )
 | |
| *
 | |
| *                 ==== Copy it back ====
 | |
| *
 | |
|                   CALL DLACPY( 'ALL', KDU, JLEN, WH, LDWH,
 | |
|      $                         H( INCOL+1, JCOL ), LDH )
 | |
|   190          CONTINUE
 | |
| *
 | |
| *              ==== Vertical multiply ====
 | |
| *
 | |
|                DO 200 JROW = JTOP, MAX( INCOL, KTOP ) - 1, NV
 | |
|                   JLEN = MIN( NV, MAX( INCOL, KTOP )-JROW )
 | |
| *
 | |
| *                 ==== Copy right of H to scratch (the first KZS
 | |
| *                 .    columns get multiplied by zero) ====
 | |
| *
 | |
|                   CALL DLACPY( 'ALL', JLEN, KNZ, H( JROW, INCOL+1+J2 ),
 | |
|      $                         LDH, WV( 1, 1+KZS ), LDWV )
 | |
| *
 | |
| *                 ==== Multiply by U21 ====
 | |
| *
 | |
|                   CALL DLASET( 'ALL', JLEN, KZS, ZERO, ZERO, WV, LDWV )
 | |
|                   CALL DTRMM( 'R', 'U', 'N', 'N', JLEN, KNZ, ONE,
 | |
|      $                        U( J2+1, 1+KZS ), LDU, WV( 1, 1+KZS ),
 | |
|      $                        LDWV )
 | |
| *
 | |
| *                 ==== Multiply by U11 ====
 | |
| *
 | |
|                   CALL DGEMM( 'N', 'N', JLEN, I2, J2, ONE,
 | |
|      $                        H( JROW, INCOL+1 ), LDH, U, LDU, ONE, WV,
 | |
|      $                        LDWV )
 | |
| *
 | |
| *                 ==== Copy left of H to right of scratch ====
 | |
| *
 | |
|                   CALL DLACPY( 'ALL', JLEN, J2, H( JROW, INCOL+1 ), LDH,
 | |
|      $                         WV( 1, 1+I2 ), LDWV )
 | |
| *
 | |
| *                 ==== Multiply by U21 ====
 | |
| *
 | |
|                   CALL DTRMM( 'R', 'L', 'N', 'N', JLEN, I4-I2, ONE,
 | |
|      $                        U( 1, I2+1 ), LDU, WV( 1, 1+I2 ), LDWV )
 | |
| *
 | |
| *                 ==== Multiply by U22 ====
 | |
| *
 | |
|                   CALL DGEMM( 'N', 'N', JLEN, I4-I2, J4-J2, ONE,
 | |
|      $                        H( JROW, INCOL+1+J2 ), LDH,
 | |
|      $                        U( J2+1, I2+1 ), LDU, ONE, WV( 1, 1+I2 ),
 | |
|      $                        LDWV )
 | |
| *
 | |
| *                 ==== Copy it back ====
 | |
| *
 | |
|                   CALL DLACPY( 'ALL', JLEN, KDU, WV, LDWV,
 | |
|      $                         H( JROW, INCOL+1 ), LDH )
 | |
|   200          CONTINUE
 | |
| *
 | |
| *              ==== Multiply Z (also vertical) ====
 | |
| *
 | |
|                IF( WANTZ ) THEN
 | |
|                   DO 210 JROW = ILOZ, IHIZ, NV
 | |
|                      JLEN = MIN( NV, IHIZ-JROW+1 )
 | |
| *
 | |
| *                    ==== Copy right of Z to left of scratch (first
 | |
| *                    .     KZS columns get multiplied by zero) ====
 | |
| *
 | |
|                      CALL DLACPY( 'ALL', JLEN, KNZ,
 | |
|      $                            Z( JROW, INCOL+1+J2 ), LDZ,
 | |
|      $                            WV( 1, 1+KZS ), LDWV )
 | |
| *
 | |
| *                    ==== Multiply by U12 ====
 | |
| *
 | |
|                      CALL DLASET( 'ALL', JLEN, KZS, ZERO, ZERO, WV,
 | |
|      $                            LDWV )
 | |
|                      CALL DTRMM( 'R', 'U', 'N', 'N', JLEN, KNZ, ONE,
 | |
|      $                           U( J2+1, 1+KZS ), LDU, WV( 1, 1+KZS ),
 | |
|      $                           LDWV )
 | |
| *
 | |
| *                    ==== Multiply by U11 ====
 | |
| *
 | |
|                      CALL DGEMM( 'N', 'N', JLEN, I2, J2, ONE,
 | |
|      $                           Z( JROW, INCOL+1 ), LDZ, U, LDU, ONE,
 | |
|      $                           WV, LDWV )
 | |
| *
 | |
| *                    ==== Copy left of Z to right of scratch ====
 | |
| *
 | |
|                      CALL DLACPY( 'ALL', JLEN, J2, Z( JROW, INCOL+1 ),
 | |
|      $                            LDZ, WV( 1, 1+I2 ), LDWV )
 | |
| *
 | |
| *                    ==== Multiply by U21 ====
 | |
| *
 | |
|                      CALL DTRMM( 'R', 'L', 'N', 'N', JLEN, I4-I2, ONE,
 | |
|      $                           U( 1, I2+1 ), LDU, WV( 1, 1+I2 ),
 | |
|      $                           LDWV )
 | |
| *
 | |
| *                    ==== Multiply by U22 ====
 | |
| *
 | |
|                      CALL DGEMM( 'N', 'N', JLEN, I4-I2, J4-J2, ONE,
 | |
|      $                           Z( JROW, INCOL+1+J2 ), LDZ,
 | |
|      $                           U( J2+1, I2+1 ), LDU, ONE,
 | |
|      $                           WV( 1, 1+I2 ), LDWV )
 | |
| *
 | |
| *                    ==== Copy the result back to Z ====
 | |
| *
 | |
|                      CALL DLACPY( 'ALL', JLEN, KDU, WV, LDWV,
 | |
|      $                            Z( JROW, INCOL+1 ), LDZ )
 | |
|   210             CONTINUE
 | |
|                END IF
 | |
|             END IF
 | |
|          END IF
 | |
|   220 CONTINUE
 | |
| *
 | |
| *     ==== End of DLAQR5 ====
 | |
| *
 | |
|       END
 |