926 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			926 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle_() continue;
 | |
| #define myceiling_(w) {ceil(w)}
 | |
| #define myhuge_(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static doublecomplex c_b1 = {1.,0.};
 | |
| static doublecomplex c_b2 = {0.,0.};
 | |
| static integer c__0 = 0;
 | |
| static integer c__1 = 1;
 | |
| 
 | |
| /* > \brief \b ZUNGTSQR_ROW */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download ZUNGTSQR_ROW + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zunrgts
 | |
| qr_row.f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zunrgts
 | |
| qr_row.f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zunrgts
 | |
| qr_row.f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE ZUNGTSQR_ROW( M, N, MB, NB, A, LDA, T, LDT, WORK, */
 | |
| /*      $                         LWORK, INFO ) */
 | |
| /*       IMPLICIT NONE */
 | |
| 
 | |
| /*       INTEGER           INFO, LDA, LDT, LWORK, M, N, MB, NB */
 | |
| /*       COMPLEX*16        A( LDA, * ), T( LDT, * ), WORK( * ) */
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > ZUNGTSQR_ROW generates an M-by-N complex matrix Q_out with */
 | |
| /* > orthonormal columns from the output of ZLATSQR. These N orthonormal */
 | |
| /* > columns are the first N columns of a product of complex unitary */
 | |
| /* > matrices Q(k)_in of order M, which are returned by ZLATSQR in */
 | |
| /* > a special format. */
 | |
| /* > */
 | |
| /* >      Q_out = first_N_columns_of( Q(1)_in * Q(2)_in * ... * Q(k)_in ). */
 | |
| /* > */
 | |
| /* > The input matrices Q(k)_in are stored in row and column blocks in A. */
 | |
| /* > See the documentation of ZLATSQR for more details on the format of */
 | |
| /* > Q(k)_in, where each Q(k)_in is represented by block Householder */
 | |
| /* > transformations. This routine calls an auxiliary routine ZLARFB_GETT, */
 | |
| /* > where the computation is performed on each individual block. The */
 | |
| /* > algorithm first sweeps NB-sized column blocks from the right to left */
 | |
| /* > starting in the bottom row block and continues to the top row block */
 | |
| /* > (hence _ROW in the routine name). This sweep is in reverse order of */
 | |
| /* > the order in which ZLATSQR generates the output blocks. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The number of rows of the matrix A.  M >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The number of columns of the matrix A. M >= N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] MB */
 | |
| /* > \verbatim */
 | |
| /* >          MB is INTEGER */
 | |
| /* >          The row block size used by ZLATSQR to return */
 | |
| /* >          arrays A and T. MB > N. */
 | |
| /* >          (Note that if MB > M, then M is used instead of MB */
 | |
| /* >          as the row block size). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NB */
 | |
| /* > \verbatim */
 | |
| /* >          NB is INTEGER */
 | |
| /* >          The column block size used by ZLATSQR to return */
 | |
| /* >          arrays A and T. NB >= 1. */
 | |
| /* >          (Note that if NB > N, then N is used instead of NB */
 | |
| /* >          as the column block size). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is COMPLEX*16 array, dimension (LDA,N) */
 | |
| /* > */
 | |
| /* >          On entry: */
 | |
| /* > */
 | |
| /* >             The elements on and above the diagonal are not used as */
 | |
| /* >             input. The elements below the diagonal represent the unit */
 | |
| /* >             lower-trapezoidal blocked matrix V computed by ZLATSQR */
 | |
| /* >             that defines the input matrices Q_in(k) (ones on the */
 | |
| /* >             diagonal are not stored). See ZLATSQR for more details. */
 | |
| /* > */
 | |
| /* >          On exit: */
 | |
| /* > */
 | |
| /* >             The array A contains an M-by-N orthonormal matrix Q_out, */
 | |
| /* >             i.e the columns of A are orthogonal unit vectors. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A.  LDA >= f2cmax(1,M). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] T */
 | |
| /* > \verbatim */
 | |
| /* >          T is COMPLEX*16 array, */
 | |
| /* >          dimension (LDT, N * NIRB) */
 | |
| /* >          where NIRB = Number_of_input_row_blocks */
 | |
| /* >                     = MAX( 1, CEIL((M-N)/(MB-N)) ) */
 | |
| /* >          Let NICB = Number_of_input_col_blocks */
 | |
| /* >                   = CEIL(N/NB) */
 | |
| /* > */
 | |
| /* >          The upper-triangular block reflectors used to define the */
 | |
| /* >          input matrices Q_in(k), k=(1:NIRB*NICB). The block */
 | |
| /* >          reflectors are stored in compact form in NIRB block */
 | |
| /* >          reflector sequences. Each of the NIRB block reflector */
 | |
| /* >          sequences is stored in a larger NB-by-N column block of T */
 | |
| /* >          and consists of NICB smaller NB-by-NB upper-triangular */
 | |
| /* >          column blocks. See ZLATSQR for more details on the format */
 | |
| /* >          of T. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDT */
 | |
| /* > \verbatim */
 | |
| /* >          LDT is INTEGER */
 | |
| /* >          The leading dimension of the array T. */
 | |
| /* >          LDT >= f2cmax(1,f2cmin(NB,N)). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK)) */
 | |
| /* >          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LWORK */
 | |
| /* > \verbatim */
 | |
| /* >          The dimension of the array WORK. */
 | |
| /* >          LWORK >= NBLOCAL * MAX(NBLOCAL,(N-NBLOCAL)), */
 | |
| /* >          where NBLOCAL=MIN(NB,N). */
 | |
| /* >          If LWORK = -1, then a workspace query is assumed. */
 | |
| /* >          The routine only calculates the optimal size of the WORK */
 | |
| /* >          array, returns this value as the first entry of the WORK */
 | |
| /* >          array, and no error message related to LWORK is issued */
 | |
| /* >          by XERBLA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \ingroup complex16OTHERcomputational */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > November 2020, Igor Kozachenko, */
 | |
| /* >                Computer Science Division, */
 | |
| /* >                University of California, Berkeley */
 | |
| /* > */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void zungtsqr_row_(integer *m, integer *n, integer *mb, 
 | |
| 	integer *nb, doublecomplex *a, integer *lda, doublecomplex *t, 
 | |
| 	integer *ldt, doublecomplex *work, integer *lwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, t_dim1, t_offset, i__1, i__2, i__3, i__4, i__5;
 | |
|     doublecomplex z__1;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer jb_t__, itmp, lworkopt;
 | |
|     doublecomplex dummy[1]	/* was [1][1] */;
 | |
|     integer ib_bottom__, ib, kb;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     integer mb1, mb2;
 | |
|     extern /* Subroutine */ void zlaset_(char *, integer *, integer *, 
 | |
| 	    doublecomplex *, doublecomplex *, doublecomplex *, integer *);
 | |
|     integer m_plus_one__;
 | |
|     logical lquery;
 | |
|     integer num_all_row_blocks__, imb, knb, nblocal, kb_last__;
 | |
|     extern /* Subroutine */ void zlarfb_gett_(char *, integer *, integer *, 
 | |
| 	    integer *, doublecomplex *, integer *, doublecomplex *, integer *,
 | |
| 	     doublecomplex *, integer *, doublecomplex *, integer *);
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input parameters */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     t_dim1 = *ldt;
 | |
|     t_offset = 1 + t_dim1 * 1;
 | |
|     t -= t_offset;
 | |
|     --work;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     lquery = *lwork == -1;
 | |
|     if (*m < 0) {
 | |
| 	*info = -1;
 | |
|     } else if (*n < 0 || *m < *n) {
 | |
| 	*info = -2;
 | |
|     } else if (*mb <= *n) {
 | |
| 	*info = -3;
 | |
|     } else if (*nb < 1) {
 | |
| 	*info = -4;
 | |
|     } else if (*lda < f2cmax(1,*m)) {
 | |
| 	*info = -6;
 | |
|     } else /* if(complicated condition) */ {
 | |
| /* Computing MAX */
 | |
| 	i__1 = 1, i__2 = f2cmin(*nb,*n);
 | |
| 	if (*ldt < f2cmax(i__1,i__2)) {
 | |
| 	    *info = -8;
 | |
| 	} else if (*lwork < 1 && ! lquery) {
 | |
| 	    *info = -10;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     nblocal = f2cmin(*nb,*n);
 | |
| 
 | |
| /*     Determine the workspace size. */
 | |
| 
 | |
|     if (*info == 0) {
 | |
| /* Computing MAX */
 | |
| 	i__1 = nblocal, i__2 = *n - nblocal;
 | |
| 	lworkopt = nblocal * f2cmax(i__1,i__2);
 | |
|     }
 | |
| 
 | |
| /*     Handle error in the input parameters and handle the workspace query. */
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("ZUNGTSQR_ROW", &i__1, (ftnlen)12);
 | |
| 	return;
 | |
|     } else if (lquery) {
 | |
| 	z__1.r = (doublereal) lworkopt, z__1.i = 0.;
 | |
| 	work[1].r = z__1.r, work[1].i = z__1.i;
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (f2cmin(*m,*n) == 0) {
 | |
| 	z__1.r = (doublereal) lworkopt, z__1.i = 0.;
 | |
| 	work[1].r = z__1.r, work[1].i = z__1.i;
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     (0) Set the upper-triangular part of the matrix A to zero and */
 | |
| /*     its diagonal elements to one. */
 | |
| 
 | |
|     zlaset_("U", m, n, &c_b2, &c_b1, &a[a_offset], lda);
 | |
| 
 | |
| /*     KB_LAST is the column index of the last column block reflector */
 | |
| /*     in the matrices T and V. */
 | |
| 
 | |
|     kb_last__ = (*n - 1) / nblocal * nblocal + 1;
 | |
| 
 | |
| 
 | |
| /*     (1) Bottom-up loop over row blocks of A, except the top row block. */
 | |
| /*     NOTE: If MB>=M, then the loop is never executed. */
 | |
| 
 | |
|     if (*mb < *m) {
 | |
| 
 | |
| /*        MB2 is the row blocking size for the row blocks before the */
 | |
| /*        first top row block in the matrix A. IB is the row index for */
 | |
| /*        the row blocks in the matrix A before the first top row block. */
 | |
| /*        IB_BOTTOM is the row index for the last bottom row block */
 | |
| /*        in the matrix A. JB_T is the column index of the corresponding */
 | |
| /*        column block in the matrix T. */
 | |
| 
 | |
| /*        Initialize variables. */
 | |
| 
 | |
| /*        NUM_ALL_ROW_BLOCKS is the number of row blocks in the matrix A */
 | |
| /*        including the first row block. */
 | |
| 
 | |
| 	mb2 = *mb - *n;
 | |
| 	m_plus_one__ = *m + 1;
 | |
| 	itmp = (*m - *mb - 1) / mb2;
 | |
| 	ib_bottom__ = itmp * mb2 + *mb + 1;
 | |
| 	num_all_row_blocks__ = itmp + 2;
 | |
| 	jb_t__ = num_all_row_blocks__ * *n + 1;
 | |
| 
 | |
| 	i__1 = *mb + 1;
 | |
| 	i__2 = -mb2;
 | |
| 	for (ib = ib_bottom__; i__2 < 0 ? ib >= i__1 : ib <= i__1; ib += i__2)
 | |
| 		 {
 | |
| 
 | |
| /*           Determine the block size IMB for the current row block */
 | |
| /*           in the matrix A. */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 	    i__3 = m_plus_one__ - ib;
 | |
| 	    imb = f2cmin(i__3,mb2);
 | |
| 
 | |
| /*           Determine the column index JB_T for the current column block */
 | |
| /*           in the matrix T. */
 | |
| 
 | |
| 	    jb_t__ -= *n;
 | |
| 
 | |
| /*           Apply column blocks of H in the row block from right to left. */
 | |
| 
 | |
| /*           KB is the column index of the current column block reflector */
 | |
| /*           in the matrices T and V. */
 | |
| 
 | |
| 	    i__3 = -nblocal;
 | |
| 	    for (kb = kb_last__; i__3 < 0 ? kb >= 1 : kb <= 1; kb += i__3) {
 | |
| 
 | |
| /*              Determine the size of the current column block KNB in */
 | |
| /*              the matrices T and V. */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 		i__4 = nblocal, i__5 = *n - kb + 1;
 | |
| 		knb = f2cmin(i__4,i__5);
 | |
| 
 | |
| 		i__4 = *n - kb + 1;
 | |
| 		zlarfb_gett_("I", &imb, &i__4, &knb, &t[(jb_t__ + kb - 1) * 
 | |
| 			t_dim1 + 1], ldt, &a[kb + kb * a_dim1], lda, &a[ib + 
 | |
| 			kb * a_dim1], lda, &work[1], &knb);
 | |
| 
 | |
| 	    }
 | |
| 
 | |
| 	}
 | |
| 
 | |
|     }
 | |
| 
 | |
| /*     (2) Top row block of A. */
 | |
| /*     NOTE: If MB>=M, then we have only one row block of A of size M */
 | |
| /*     and we work on the entire matrix A. */
 | |
| 
 | |
|     mb1 = f2cmin(*mb,*m);
 | |
| 
 | |
| /*     Apply column blocks of H in the top row block from right to left. */
 | |
| 
 | |
| /*     KB is the column index of the current block reflector in */
 | |
| /*     the matrices T and V. */
 | |
| 
 | |
|     i__2 = -nblocal;
 | |
|     for (kb = kb_last__; i__2 < 0 ? kb >= 1 : kb <= 1; kb += i__2) {
 | |
| 
 | |
| /*        Determine the size of the current column block KNB in */
 | |
| /*        the matrices T and V. */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 	i__1 = nblocal, i__3 = *n - kb + 1;
 | |
| 	knb = f2cmin(i__1,i__3);
 | |
| 
 | |
| 	if (mb1 - kb - knb + 1 == 0) {
 | |
| 
 | |
| /*           In SLARFB_GETT parameters, when M=0, then the matrix B */
 | |
| /*           does not exist, hence we need to pass a dummy array */
 | |
| /*           reference DUMMY(1,1) to B with LDDUMMY=1. */
 | |
| 
 | |
| 	    i__1 = *n - kb + 1;
 | |
| 	    zlarfb_gett_("N", &c__0, &i__1, &knb, &t[kb * t_dim1 + 1], ldt, &
 | |
| 		    a[kb + kb * a_dim1], lda, dummy, &c__1, &work[1], &knb);
 | |
| 	} else {
 | |
| 	    i__1 = mb1 - kb - knb + 1;
 | |
| 	    i__3 = *n - kb + 1;
 | |
| 	    zlarfb_gett_("N", &i__1, &i__3, &knb, &t[kb * t_dim1 + 1], ldt, &
 | |
| 		    a[kb + kb * a_dim1], lda, &a[kb + knb + kb * a_dim1], lda,
 | |
| 		     &work[1], &knb);
 | |
| 	}
 | |
| 
 | |
|     }
 | |
| 
 | |
|     z__1.r = (doublereal) lworkopt, z__1.i = 0.;
 | |
|     work[1].r = z__1.r, work[1].i = z__1.i;
 | |
|     return;
 | |
| 
 | |
| /*     End of ZUNGTSQR_ROW */
 | |
| 
 | |
| } /* zungtsqr_row__ */
 | |
| 
 |