1343 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1343 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle_() continue;
 | |
| #define myceiling_(w) {ceil(w)}
 | |
| #define myhuge_(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c_n1 = -1;
 | |
| static logical c_false = FALSE_;
 | |
| 
 | |
| /* > \brief \b ZUNCSD */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download ZUNCSD + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zuncsd.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zuncsd.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zuncsd.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*        SUBROUTINE ZUNCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, */
 | |
| /*                                    SIGNS, M, P, Q, X11, LDX11, X12, */
 | |
| /*                                    LDX12, X21, LDX21, X22, LDX22, THETA, */
 | |
| /*                                    U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, */
 | |
| /*                                    LDV2T, WORK, LWORK, RWORK, LRWORK, */
 | |
| /*                                    IWORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          JOBU1, JOBU2, JOBV1T, JOBV2T, SIGNS, TRANS */
 | |
| /*       INTEGER            INFO, LDU1, LDU2, LDV1T, LDV2T, LDX11, LDX12, */
 | |
| /*      $                   LDX21, LDX22, LRWORK, LWORK, M, P, Q */
 | |
| /*       INTEGER            IWORK( * ) */
 | |
| /*       DOUBLE PRECISION   THETA( * ) */
 | |
| /*       DOUBLE PRECISION   RWORK( * ) */
 | |
| /*       COMPLEX*16         U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ), */
 | |
| /*      $                   V2T( LDV2T, * ), WORK( * ), X11( LDX11, * ), */
 | |
| /*      $                   X12( LDX12, * ), X21( LDX21, * ), X22( LDX22, */
 | |
| /*      $                   * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > ZUNCSD computes the CS decomposition of an M-by-M partitioned */
 | |
| /* > unitary matrix X: */
 | |
| /* > */
 | |
| /* >                                 [  I  0  0 |  0  0  0 ] */
 | |
| /* >                                 [  0  C  0 |  0 -S  0 ] */
 | |
| /* >     [ X11 | X12 ]   [ U1 |    ] [  0  0  0 |  0  0 -I ] [ V1 |    ]**H */
 | |
| /* > X = [-----------] = [---------] [---------------------] [---------]   . */
 | |
| /* >     [ X21 | X22 ]   [    | U2 ] [  0  0  0 |  I  0  0 ] [    | V2 ] */
 | |
| /* >                                 [  0  S  0 |  0  C  0 ] */
 | |
| /* >                                 [  0  0  I |  0  0  0 ] */
 | |
| /* > */
 | |
| /* > X11 is P-by-Q. The unitary matrices U1, U2, V1, and V2 are P-by-P, */
 | |
| /* > (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are */
 | |
| /* > R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in */
 | |
| /* > which R = MIN(P,M-P,Q,M-Q). */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] JOBU1 */
 | |
| /* > \verbatim */
 | |
| /* >          JOBU1 is CHARACTER */
 | |
| /* >          = 'Y':      U1 is computed; */
 | |
| /* >          otherwise:  U1 is not computed. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] JOBU2 */
 | |
| /* > \verbatim */
 | |
| /* >          JOBU2 is CHARACTER */
 | |
| /* >          = 'Y':      U2 is computed; */
 | |
| /* >          otherwise:  U2 is not computed. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] JOBV1T */
 | |
| /* > \verbatim */
 | |
| /* >          JOBV1T is CHARACTER */
 | |
| /* >          = 'Y':      V1T is computed; */
 | |
| /* >          otherwise:  V1T is not computed. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] JOBV2T */
 | |
| /* > \verbatim */
 | |
| /* >          JOBV2T is CHARACTER */
 | |
| /* >          = 'Y':      V2T is computed; */
 | |
| /* >          otherwise:  V2T is not computed. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] TRANS */
 | |
| /* > \verbatim */
 | |
| /* >          TRANS is CHARACTER */
 | |
| /* >          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major */
 | |
| /* >                      order; */
 | |
| /* >          otherwise:  X, U1, U2, V1T, and V2T are stored in column- */
 | |
| /* >                      major order. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] SIGNS */
 | |
| /* > \verbatim */
 | |
| /* >          SIGNS is CHARACTER */
 | |
| /* >          = 'O':      The lower-left block is made nonpositive (the */
 | |
| /* >                      "other" convention); */
 | |
| /* >          otherwise:  The upper-right block is made nonpositive (the */
 | |
| /* >                      "default" convention). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The number of rows and columns in X. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] P */
 | |
| /* > \verbatim */
 | |
| /* >          P is INTEGER */
 | |
| /* >          The number of rows in X11 and X12. 0 <= P <= M. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] Q */
 | |
| /* > \verbatim */
 | |
| /* >          Q is INTEGER */
 | |
| /* >          The number of columns in X11 and X21. 0 <= Q <= M. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] X11 */
 | |
| /* > \verbatim */
 | |
| /* >          X11 is COMPLEX*16 array, dimension (LDX11,Q) */
 | |
| /* >          On entry, part of the unitary matrix whose CSD is desired. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDX11 */
 | |
| /* > \verbatim */
 | |
| /* >          LDX11 is INTEGER */
 | |
| /* >          The leading dimension of X11. LDX11 >= MAX(1,P). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] X12 */
 | |
| /* > \verbatim */
 | |
| /* >          X12 is COMPLEX*16 array, dimension (LDX12,M-Q) */
 | |
| /* >          On entry, part of the unitary matrix whose CSD is desired. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDX12 */
 | |
| /* > \verbatim */
 | |
| /* >          LDX12 is INTEGER */
 | |
| /* >          The leading dimension of X12. LDX12 >= MAX(1,P). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] X21 */
 | |
| /* > \verbatim */
 | |
| /* >          X21 is COMPLEX*16 array, dimension (LDX21,Q) */
 | |
| /* >          On entry, part of the unitary matrix whose CSD is desired. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDX21 */
 | |
| /* > \verbatim */
 | |
| /* >          LDX21 is INTEGER */
 | |
| /* >          The leading dimension of X11. LDX21 >= MAX(1,M-P). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] X22 */
 | |
| /* > \verbatim */
 | |
| /* >          X22 is COMPLEX*16 array, dimension (LDX22,M-Q) */
 | |
| /* >          On entry, part of the unitary matrix whose CSD is desired. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDX22 */
 | |
| /* > \verbatim */
 | |
| /* >          LDX22 is INTEGER */
 | |
| /* >          The leading dimension of X11. LDX22 >= MAX(1,M-P). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] THETA */
 | |
| /* > \verbatim */
 | |
| /* >          THETA is DOUBLE PRECISION array, dimension (R), in which R = */
 | |
| /* >          MIN(P,M-P,Q,M-Q). */
 | |
| /* >          C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and */
 | |
| /* >          S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] U1 */
 | |
| /* > \verbatim */
 | |
| /* >          U1 is COMPLEX*16 array, dimension (LDU1,P) */
 | |
| /* >          If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDU1 */
 | |
| /* > \verbatim */
 | |
| /* >          LDU1 is INTEGER */
 | |
| /* >          The leading dimension of U1. If JOBU1 = 'Y', LDU1 >= */
 | |
| /* >          MAX(1,P). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] U2 */
 | |
| /* > \verbatim */
 | |
| /* >          U2 is COMPLEX*16 array, dimension (LDU2,M-P) */
 | |
| /* >          If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary */
 | |
| /* >          matrix U2. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDU2 */
 | |
| /* > \verbatim */
 | |
| /* >          LDU2 is INTEGER */
 | |
| /* >          The leading dimension of U2. If JOBU2 = 'Y', LDU2 >= */
 | |
| /* >          MAX(1,M-P). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] V1T */
 | |
| /* > \verbatim */
 | |
| /* >          V1T is COMPLEX*16 array, dimension (LDV1T,Q) */
 | |
| /* >          If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary */
 | |
| /* >          matrix V1**H. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDV1T */
 | |
| /* > \verbatim */
 | |
| /* >          LDV1T is INTEGER */
 | |
| /* >          The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >= */
 | |
| /* >          MAX(1,Q). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] V2T */
 | |
| /* > \verbatim */
 | |
| /* >          V2T is COMPLEX*16 array, dimension (LDV2T,M-Q) */
 | |
| /* >          If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) unitary */
 | |
| /* >          matrix V2**H. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDV2T */
 | |
| /* > \verbatim */
 | |
| /* >          LDV2T is INTEGER */
 | |
| /* >          The leading dimension of V2T. If JOBV2T = 'Y', LDV2T >= */
 | |
| /* >          MAX(1,M-Q). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) */
 | |
| /* >          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LWORK is INTEGER */
 | |
| /* >          The dimension of the array WORK. */
 | |
| /* > */
 | |
| /* >          If LWORK = -1, then a workspace query is assumed; the routine */
 | |
| /* >          only calculates the optimal size of the WORK array, returns */
 | |
| /* >          this value as the first entry of the work array, and no error */
 | |
| /* >          message related to LWORK is issued by XERBLA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RWORK */
 | |
| /* > \verbatim */
 | |
| /* >          RWORK is DOUBLE PRECISION array, dimension MAX(1,LRWORK) */
 | |
| /* >          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK. */
 | |
| /* >          If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1), */
 | |
| /* >          ..., PHI(R-1) that, together with THETA(1), ..., THETA(R), */
 | |
| /* >          define the matrix in intermediate bidiagonal-block form */
 | |
| /* >          remaining after nonconvergence. INFO specifies the number */
 | |
| /* >          of nonzero PHI's. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LRWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LRWORK is INTEGER */
 | |
| /* >          The dimension of the array RWORK. */
 | |
| /* > */
 | |
| /* >          If LRWORK = -1, then a workspace query is assumed; the routine */
 | |
| /* >          only calculates the optimal size of the RWORK array, returns */
 | |
| /* >          this value as the first entry of the work array, and no error */
 | |
| /* >          message related to LRWORK is issued by XERBLA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IWORK */
 | |
| /* > \verbatim */
 | |
| /* >          IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q)) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit. */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | |
| /* >          > 0:  ZBBCSD did not converge. See the description of RWORK */
 | |
| /* >                above for details. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /* > \par References: */
 | |
| /*  ================ */
 | |
| /* > */
 | |
| /* >  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer. */
 | |
| /* >      Algorithms, 50(1):33-65, 2009. */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date June 2017 */
 | |
| 
 | |
| /* > \ingroup complex16OTHERcomputational */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void zuncsd_(char *jobu1, char *jobu2, char *jobv1t, char *
 | |
| 	jobv2t, char *trans, char *signs, integer *m, integer *p, integer *q, 
 | |
| 	doublecomplex *x11, integer *ldx11, doublecomplex *x12, integer *
 | |
| 	ldx12, doublecomplex *x21, integer *ldx21, doublecomplex *x22, 
 | |
| 	integer *ldx22, doublereal *theta, doublecomplex *u1, integer *ldu1, 
 | |
| 	doublecomplex *u2, integer *ldu2, doublecomplex *v1t, integer *ldv1t, 
 | |
| 	doublecomplex *v2t, integer *ldv2t, doublecomplex *work, integer *
 | |
| 	lwork, doublereal *rwork, integer *lrwork, integer *iwork, integer *
 | |
| 	info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer u1_dim1, u1_offset, u2_dim1, u2_offset, v1t_dim1, v1t_offset, 
 | |
| 	    v2t_dim1, v2t_offset, x11_dim1, x11_offset, x12_dim1, x12_offset, 
 | |
| 	    x21_dim1, x21_offset, x22_dim1, x22_offset, i__1, i__2, i__3, 
 | |
| 	    i__4, i__5, i__6;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer ib11d, ib11e, ib12d, ib12e, ib21d, ib21e, ib22d, ib22e, iphi;
 | |
|     logical colmajor;
 | |
|     integer lworkmin;
 | |
|     logical defaultsigns;
 | |
|     integer lworkopt, i__, j;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     integer childinfo, p1, q1, lbbcsdworkmin, itaup1, itaup2, itauq1, itauq2, 
 | |
| 	    lorbdbworkmin, lrworkmin, lbbcsdworkopt;
 | |
|     logical wantu1, wantu2;
 | |
|     integer lrworkopt, ibbcsd, lorbdbworkopt, iorbdb, lorglqworkmin;
 | |
|     extern /* Subroutine */ void zbbcsd_(char *, char *, char *, char *, char *
 | |
| 	    , integer *, integer *, integer *, doublereal *, doublereal *, 
 | |
| 	    doublecomplex *, integer *, doublecomplex *, integer *, 
 | |
| 	    doublecomplex *, integer *, doublecomplex *, integer *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, doublereal *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, doublereal *, 
 | |
| 	    doublereal *, integer *, integer *);
 | |
|     integer lorgqrworkmin;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     integer lorglqworkopt;
 | |
|     extern /* Subroutine */ void zunbdb_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, doublecomplex *, integer *, doublecomplex *, integer *,
 | |
| 	     doublecomplex *, integer *, doublecomplex *, integer *, 
 | |
| 	    doublereal *, doublereal *, doublecomplex *, doublecomplex *, 
 | |
| 	    doublecomplex *, doublecomplex *, doublecomplex *, integer *, 
 | |
| 	    integer *);
 | |
|     integer lorgqrworkopt, iorglq;
 | |
|     extern /* Subroutine */ void zlacpy_(char *, integer *, integer *, 
 | |
| 	    doublecomplex *, integer *, doublecomplex *, integer *);
 | |
|     integer iorgqr;
 | |
|     extern /* Subroutine */ void zlapmr_(logical *, integer *, integer *, 
 | |
| 	    doublecomplex *, integer *, integer *);
 | |
|     char signst[1];
 | |
|     extern /* Subroutine */ void zlapmt_(logical *, integer *, integer *, 
 | |
| 	    doublecomplex *, integer *, integer *);
 | |
|     char transt[1];
 | |
|     integer lbbcsdwork;
 | |
|     logical lquery;
 | |
|     extern /* Subroutine */ void zunglq_(integer *, integer *, integer *, 
 | |
| 	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
 | |
| 	    integer *, integer *);
 | |
|     integer lorbdbwork;
 | |
|     extern /* Subroutine */ void zungqr_(integer *, integer *, integer *, 
 | |
| 	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
 | |
| 	    integer *, integer *);
 | |
|     integer lorglqwork, lorgqrwork;
 | |
|     logical wantv1t, wantv2t, lrquery;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.1) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2017 */
 | |
| 
 | |
| 
 | |
| /*  =================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test input arguments */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     x11_dim1 = *ldx11;
 | |
|     x11_offset = 1 + x11_dim1 * 1;
 | |
|     x11 -= x11_offset;
 | |
|     x12_dim1 = *ldx12;
 | |
|     x12_offset = 1 + x12_dim1 * 1;
 | |
|     x12 -= x12_offset;
 | |
|     x21_dim1 = *ldx21;
 | |
|     x21_offset = 1 + x21_dim1 * 1;
 | |
|     x21 -= x21_offset;
 | |
|     x22_dim1 = *ldx22;
 | |
|     x22_offset = 1 + x22_dim1 * 1;
 | |
|     x22 -= x22_offset;
 | |
|     --theta;
 | |
|     u1_dim1 = *ldu1;
 | |
|     u1_offset = 1 + u1_dim1 * 1;
 | |
|     u1 -= u1_offset;
 | |
|     u2_dim1 = *ldu2;
 | |
|     u2_offset = 1 + u2_dim1 * 1;
 | |
|     u2 -= u2_offset;
 | |
|     v1t_dim1 = *ldv1t;
 | |
|     v1t_offset = 1 + v1t_dim1 * 1;
 | |
|     v1t -= v1t_offset;
 | |
|     v2t_dim1 = *ldv2t;
 | |
|     v2t_offset = 1 + v2t_dim1 * 1;
 | |
|     v2t -= v2t_offset;
 | |
|     --work;
 | |
|     --rwork;
 | |
|     --iwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     wantu1 = lsame_(jobu1, "Y");
 | |
|     wantu2 = lsame_(jobu2, "Y");
 | |
|     wantv1t = lsame_(jobv1t, "Y");
 | |
|     wantv2t = lsame_(jobv2t, "Y");
 | |
|     colmajor = ! lsame_(trans, "T");
 | |
|     defaultsigns = ! lsame_(signs, "O");
 | |
|     lquery = *lwork == -1;
 | |
|     lrquery = *lrwork == -1;
 | |
|     if (*m < 0) {
 | |
| 	*info = -7;
 | |
|     } else if (*p < 0 || *p > *m) {
 | |
| 	*info = -8;
 | |
|     } else if (*q < 0 || *q > *m) {
 | |
| 	*info = -9;
 | |
|     } else if (colmajor && *ldx11 < f2cmax(1,*p)) {
 | |
| 	*info = -11;
 | |
|     } else if (! colmajor && *ldx11 < f2cmax(1,*q)) {
 | |
| 	*info = -11;
 | |
|     } else if (colmajor && *ldx12 < f2cmax(1,*p)) {
 | |
| 	*info = -13;
 | |
|     } else /* if(complicated condition) */ {
 | |
| /* Computing MAX */
 | |
| 	i__1 = 1, i__2 = *m - *q;
 | |
| 	if (! colmajor && *ldx12 < f2cmax(i__1,i__2)) {
 | |
| 	    *info = -13;
 | |
| 	} else /* if(complicated condition) */ {
 | |
| /* Computing MAX */
 | |
| 	    i__1 = 1, i__2 = *m - *p;
 | |
| 	    if (colmajor && *ldx21 < f2cmax(i__1,i__2)) {
 | |
| 		*info = -15;
 | |
| 	    } else if (! colmajor && *ldx21 < f2cmax(1,*q)) {
 | |
| 		*info = -15;
 | |
| 	    } else /* if(complicated condition) */ {
 | |
| /* Computing MAX */
 | |
| 		i__1 = 1, i__2 = *m - *p;
 | |
| 		if (colmajor && *ldx22 < f2cmax(i__1,i__2)) {
 | |
| 		    *info = -17;
 | |
| 		} else /* if(complicated condition) */ {
 | |
| /* Computing MAX */
 | |
| 		    i__1 = 1, i__2 = *m - *q;
 | |
| 		    if (! colmajor && *ldx22 < f2cmax(i__1,i__2)) {
 | |
| 			*info = -17;
 | |
| 		    } else if (wantu1 && *ldu1 < *p) {
 | |
| 			*info = -20;
 | |
| 		    } else if (wantu2 && *ldu2 < *m - *p) {
 | |
| 			*info = -22;
 | |
| 		    } else if (wantv1t && *ldv1t < *q) {
 | |
| 			*info = -24;
 | |
| 		    } else if (wantv2t && *ldv2t < *m - *q) {
 | |
| 			*info = -26;
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Work with transpose if convenient */
 | |
| 
 | |
| /* Computing MIN */
 | |
|     i__1 = *p, i__2 = *m - *p;
 | |
| /* Computing MIN */
 | |
|     i__3 = *q, i__4 = *m - *q;
 | |
|     if (*info == 0 && f2cmin(i__1,i__2) < f2cmin(i__3,i__4)) {
 | |
| 	if (colmajor) {
 | |
| 	    *(unsigned char *)transt = 'T';
 | |
| 	} else {
 | |
| 	    *(unsigned char *)transt = 'N';
 | |
| 	}
 | |
| 	if (defaultsigns) {
 | |
| 	    *(unsigned char *)signst = 'O';
 | |
| 	} else {
 | |
| 	    *(unsigned char *)signst = 'D';
 | |
| 	}
 | |
| 	zuncsd_(jobv1t, jobv2t, jobu1, jobu2, transt, signst, m, q, p, &x11[
 | |
| 		x11_offset], ldx11, &x21[x21_offset], ldx21, &x12[x12_offset],
 | |
| 		 ldx12, &x22[x22_offset], ldx22, &theta[1], &v1t[v1t_offset], 
 | |
| 		ldv1t, &v2t[v2t_offset], ldv2t, &u1[u1_offset], ldu1, &u2[
 | |
| 		u2_offset], ldu2, &work[1], lwork, &rwork[1], lrwork, &iwork[
 | |
| 		1], info);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Work with permutation [ 0 I; I 0 ] * X * [ 0 I; I 0 ] if */
 | |
| /*     convenient */
 | |
| 
 | |
|     if (*info == 0 && *m - *q < *q) {
 | |
| 	if (defaultsigns) {
 | |
| 	    *(unsigned char *)signst = 'O';
 | |
| 	} else {
 | |
| 	    *(unsigned char *)signst = 'D';
 | |
| 	}
 | |
| 	i__1 = *m - *p;
 | |
| 	i__2 = *m - *q;
 | |
| 	zuncsd_(jobu2, jobu1, jobv2t, jobv1t, trans, signst, m, &i__1, &i__2, 
 | |
| 		&x22[x22_offset], ldx22, &x21[x21_offset], ldx21, &x12[
 | |
| 		x12_offset], ldx12, &x11[x11_offset], ldx11, &theta[1], &u2[
 | |
| 		u2_offset], ldu2, &u1[u1_offset], ldu1, &v2t[v2t_offset], 
 | |
| 		ldv2t, &v1t[v1t_offset], ldv1t, &work[1], lwork, &rwork[1], 
 | |
| 		lrwork, &iwork[1], info);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Compute workspace */
 | |
| 
 | |
|     if (*info == 0) {
 | |
| 
 | |
| /*        Real workspace */
 | |
| 
 | |
| 	iphi = 2;
 | |
| /* Computing MAX */
 | |
| 	i__1 = 1, i__2 = *q - 1;
 | |
| 	ib11d = iphi + f2cmax(i__1,i__2);
 | |
| 	ib11e = ib11d + f2cmax(1,*q);
 | |
| /* Computing MAX */
 | |
| 	i__1 = 1, i__2 = *q - 1;
 | |
| 	ib12d = ib11e + f2cmax(i__1,i__2);
 | |
| 	ib12e = ib12d + f2cmax(1,*q);
 | |
| /* Computing MAX */
 | |
| 	i__1 = 1, i__2 = *q - 1;
 | |
| 	ib21d = ib12e + f2cmax(i__1,i__2);
 | |
| 	ib21e = ib21d + f2cmax(1,*q);
 | |
| /* Computing MAX */
 | |
| 	i__1 = 1, i__2 = *q - 1;
 | |
| 	ib22d = ib21e + f2cmax(i__1,i__2);
 | |
| 	ib22e = ib22d + f2cmax(1,*q);
 | |
| /* Computing MAX */
 | |
| 	i__1 = 1, i__2 = *q - 1;
 | |
| 	ibbcsd = ib22e + f2cmax(i__1,i__2);
 | |
| 	zbbcsd_(jobu1, jobu2, jobv1t, jobv2t, trans, m, p, q, &theta[1], &
 | |
| 		theta[1], &u1[u1_offset], ldu1, &u2[u2_offset], ldu2, &v1t[
 | |
| 		v1t_offset], ldv1t, &v2t[v2t_offset], ldv2t, &theta[1], &
 | |
| 		theta[1], &theta[1], &theta[1], &theta[1], &theta[1], &theta[
 | |
| 		1], &theta[1], &rwork[1], &c_n1, &childinfo);
 | |
| 	lbbcsdworkopt = (integer) rwork[1];
 | |
| 	lbbcsdworkmin = lbbcsdworkopt;
 | |
| 	lrworkopt = ibbcsd + lbbcsdworkopt - 1;
 | |
| 	lrworkmin = ibbcsd + lbbcsdworkmin - 1;
 | |
| 	rwork[1] = (doublereal) lrworkopt;
 | |
| 
 | |
| /*        Complex workspace */
 | |
| 
 | |
| 	itaup1 = 2;
 | |
| 	itaup2 = itaup1 + f2cmax(1,*p);
 | |
| /* Computing MAX */
 | |
| 	i__1 = 1, i__2 = *m - *p;
 | |
| 	itauq1 = itaup2 + f2cmax(i__1,i__2);
 | |
| 	itauq2 = itauq1 + f2cmax(1,*q);
 | |
| /* Computing MAX */
 | |
| 	i__1 = 1, i__2 = *m - *q;
 | |
| 	iorgqr = itauq2 + f2cmax(i__1,i__2);
 | |
| 	i__1 = *m - *q;
 | |
| 	i__2 = *m - *q;
 | |
| 	i__3 = *m - *q;
 | |
| /* Computing MAX */
 | |
| 	i__5 = 1, i__6 = *m - *q;
 | |
| 	i__4 = f2cmax(i__5,i__6);
 | |
| 	zungqr_(&i__1, &i__2, &i__3, &u1[u1_offset], &i__4, &u1[u1_offset], &
 | |
| 		work[1], &c_n1, &childinfo);
 | |
| 	lorgqrworkopt = (integer) work[1].r;
 | |
| /* Computing MAX */
 | |
| 	i__1 = 1, i__2 = *m - *q;
 | |
| 	lorgqrworkmin = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 	i__1 = 1, i__2 = *m - *q;
 | |
| 	iorglq = itauq2 + f2cmax(i__1,i__2);
 | |
| 	i__1 = *m - *q;
 | |
| 	i__2 = *m - *q;
 | |
| 	i__3 = *m - *q;
 | |
| /* Computing MAX */
 | |
| 	i__5 = 1, i__6 = *m - *q;
 | |
| 	i__4 = f2cmax(i__5,i__6);
 | |
| 	zunglq_(&i__1, &i__2, &i__3, &u1[u1_offset], &i__4, &u1[u1_offset], &
 | |
| 		work[1], &c_n1, &childinfo);
 | |
| 	lorglqworkopt = (integer) work[1].r;
 | |
| /* Computing MAX */
 | |
| 	i__1 = 1, i__2 = *m - *q;
 | |
| 	lorglqworkmin = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 	i__1 = 1, i__2 = *m - *q;
 | |
| 	iorbdb = itauq2 + f2cmax(i__1,i__2);
 | |
| 	zunbdb_(trans, signs, m, p, q, &x11[x11_offset], ldx11, &x12[
 | |
| 		x12_offset], ldx12, &x21[x21_offset], ldx21, &x22[x22_offset],
 | |
| 		 ldx22, &theta[1], &theta[1], &u1[u1_offset], &u2[u2_offset], 
 | |
| 		&v1t[v1t_offset], &v2t[v2t_offset], &work[1], &c_n1, &
 | |
| 		childinfo);
 | |
| 	lorbdbworkopt = (integer) work[1].r;
 | |
| 	lorbdbworkmin = lorbdbworkopt;
 | |
| /* Computing MAX */
 | |
| 	i__1 = iorgqr + lorgqrworkopt, i__2 = iorglq + lorglqworkopt, i__1 = 
 | |
| 		f2cmax(i__1,i__2), i__2 = iorbdb + lorbdbworkopt;
 | |
| 	lworkopt = f2cmax(i__1,i__2) - 1;
 | |
| /* Computing MAX */
 | |
| 	i__1 = iorgqr + lorgqrworkmin, i__2 = iorglq + lorglqworkmin, i__1 = 
 | |
| 		f2cmax(i__1,i__2), i__2 = iorbdb + lorbdbworkmin;
 | |
| 	lworkmin = f2cmax(i__1,i__2) - 1;
 | |
| 	i__1 = f2cmax(lworkopt,lworkmin);
 | |
| 	work[1].r = (doublereal) i__1, work[1].i = 0.;
 | |
| 
 | |
| 	if (*lwork < lworkmin && ! (lquery || lrquery)) {
 | |
| 	    *info = -22;
 | |
| 	} else if (*lrwork < lrworkmin && ! (lquery || lrquery)) {
 | |
| 	    *info = -24;
 | |
| 	} else {
 | |
| 	    lorgqrwork = *lwork - iorgqr + 1;
 | |
| 	    lorglqwork = *lwork - iorglq + 1;
 | |
| 	    lorbdbwork = *lwork - iorbdb + 1;
 | |
| 	    lbbcsdwork = *lrwork - ibbcsd + 1;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Abort if any illegal arguments */
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("ZUNCSD", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     } else if (lquery || lrquery) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Transform to bidiagonal block form */
 | |
| 
 | |
|     zunbdb_(trans, signs, m, p, q, &x11[x11_offset], ldx11, &x12[x12_offset], 
 | |
| 	    ldx12, &x21[x21_offset], ldx21, &x22[x22_offset], ldx22, &theta[1]
 | |
| 	    , &rwork[iphi], &work[itaup1], &work[itaup2], &work[itauq1], &
 | |
| 	    work[itauq2], &work[iorbdb], &lorbdbwork, &childinfo);
 | |
| 
 | |
| /*     Accumulate Householder reflectors */
 | |
| 
 | |
|     if (colmajor) {
 | |
| 	if (wantu1 && *p > 0) {
 | |
| 	    zlacpy_("L", p, q, &x11[x11_offset], ldx11, &u1[u1_offset], ldu1);
 | |
| 	    zungqr_(p, p, q, &u1[u1_offset], ldu1, &work[itaup1], &work[
 | |
| 		    iorgqr], &lorgqrwork, info);
 | |
| 	}
 | |
| 	if (wantu2 && *m - *p > 0) {
 | |
| 	    i__1 = *m - *p;
 | |
| 	    zlacpy_("L", &i__1, q, &x21[x21_offset], ldx21, &u2[u2_offset], 
 | |
| 		    ldu2);
 | |
| 	    i__1 = *m - *p;
 | |
| 	    i__2 = *m - *p;
 | |
| 	    zungqr_(&i__1, &i__2, q, &u2[u2_offset], ldu2, &work[itaup2], &
 | |
| 		    work[iorgqr], &lorgqrwork, info);
 | |
| 	}
 | |
| 	if (wantv1t && *q > 0) {
 | |
| 	    i__1 = *q - 1;
 | |
| 	    i__2 = *q - 1;
 | |
| 	    zlacpy_("U", &i__1, &i__2, &x11[(x11_dim1 << 1) + 1], ldx11, &v1t[
 | |
| 		    (v1t_dim1 << 1) + 2], ldv1t);
 | |
| 	    i__1 = v1t_dim1 + 1;
 | |
| 	    v1t[i__1].r = 1., v1t[i__1].i = 0.;
 | |
| 	    i__1 = *q;
 | |
| 	    for (j = 2; j <= i__1; ++j) {
 | |
| 		i__2 = j * v1t_dim1 + 1;
 | |
| 		v1t[i__2].r = 0., v1t[i__2].i = 0.;
 | |
| 		i__2 = j + v1t_dim1;
 | |
| 		v1t[i__2].r = 0., v1t[i__2].i = 0.;
 | |
| 	    }
 | |
| 	    i__1 = *q - 1;
 | |
| 	    i__2 = *q - 1;
 | |
| 	    i__3 = *q - 1;
 | |
| 	    zunglq_(&i__1, &i__2, &i__3, &v1t[(v1t_dim1 << 1) + 2], ldv1t, &
 | |
| 		    work[itauq1], &work[iorglq], &lorglqwork, info);
 | |
| 	}
 | |
| 	if (wantv2t && *m - *q > 0) {
 | |
| 	    i__1 = *m - *q;
 | |
| 	    zlacpy_("U", p, &i__1, &x12[x12_offset], ldx12, &v2t[v2t_offset], 
 | |
| 		    ldv2t);
 | |
| 	    if (*m - *p > *q) {
 | |
| 		i__1 = *m - *p - *q;
 | |
| 		i__2 = *m - *p - *q;
 | |
| 		zlacpy_("U", &i__1, &i__2, &x22[*q + 1 + (*p + 1) * x22_dim1],
 | |
| 			 ldx22, &v2t[*p + 1 + (*p + 1) * v2t_dim1], ldv2t);
 | |
| 	    }
 | |
| 	    if (*m > *q) {
 | |
| 		i__1 = *m - *q;
 | |
| 		i__2 = *m - *q;
 | |
| 		i__3 = *m - *q;
 | |
| 		zunglq_(&i__1, &i__2, &i__3, &v2t[v2t_offset], ldv2t, &work[
 | |
| 			itauq2], &work[iorglq], &lorglqwork, info);
 | |
| 	    }
 | |
| 	}
 | |
|     } else {
 | |
| 	if (wantu1 && *p > 0) {
 | |
| 	    zlacpy_("U", q, p, &x11[x11_offset], ldx11, &u1[u1_offset], ldu1);
 | |
| 	    zunglq_(p, p, q, &u1[u1_offset], ldu1, &work[itaup1], &work[
 | |
| 		    iorglq], &lorglqwork, info);
 | |
| 	}
 | |
| 	if (wantu2 && *m - *p > 0) {
 | |
| 	    i__1 = *m - *p;
 | |
| 	    zlacpy_("U", q, &i__1, &x21[x21_offset], ldx21, &u2[u2_offset], 
 | |
| 		    ldu2);
 | |
| 	    i__1 = *m - *p;
 | |
| 	    i__2 = *m - *p;
 | |
| 	    zunglq_(&i__1, &i__2, q, &u2[u2_offset], ldu2, &work[itaup2], &
 | |
| 		    work[iorglq], &lorglqwork, info);
 | |
| 	}
 | |
| 	if (wantv1t && *q > 0) {
 | |
| 	    i__1 = *q - 1;
 | |
| 	    i__2 = *q - 1;
 | |
| 	    zlacpy_("L", &i__1, &i__2, &x11[x11_dim1 + 2], ldx11, &v1t[(
 | |
| 		    v1t_dim1 << 1) + 2], ldv1t);
 | |
| 	    i__1 = v1t_dim1 + 1;
 | |
| 	    v1t[i__1].r = 1., v1t[i__1].i = 0.;
 | |
| 	    i__1 = *q;
 | |
| 	    for (j = 2; j <= i__1; ++j) {
 | |
| 		i__2 = j * v1t_dim1 + 1;
 | |
| 		v1t[i__2].r = 0., v1t[i__2].i = 0.;
 | |
| 		i__2 = j + v1t_dim1;
 | |
| 		v1t[i__2].r = 0., v1t[i__2].i = 0.;
 | |
| 	    }
 | |
| 	    i__1 = *q - 1;
 | |
| 	    i__2 = *q - 1;
 | |
| 	    i__3 = *q - 1;
 | |
| 	    zungqr_(&i__1, &i__2, &i__3, &v1t[(v1t_dim1 << 1) + 2], ldv1t, &
 | |
| 		    work[itauq1], &work[iorgqr], &lorgqrwork, info);
 | |
| 	}
 | |
| 	if (wantv2t && *m - *q > 0) {
 | |
| /* Computing MIN */
 | |
| 	    i__1 = *p + 1;
 | |
| 	    p1 = f2cmin(i__1,*m);
 | |
| /* Computing MIN */
 | |
| 	    i__1 = *q + 1;
 | |
| 	    q1 = f2cmin(i__1,*m);
 | |
| 	    i__1 = *m - *q;
 | |
| 	    zlacpy_("L", &i__1, p, &x12[x12_offset], ldx12, &v2t[v2t_offset], 
 | |
| 		    ldv2t);
 | |
| 	    if (*m > *p + *q) {
 | |
| 		i__1 = *m - *p - *q;
 | |
| 		i__2 = *m - *p - *q;
 | |
| 		zlacpy_("L", &i__1, &i__2, &x22[p1 + q1 * x22_dim1], ldx22, &
 | |
| 			v2t[*p + 1 + (*p + 1) * v2t_dim1], ldv2t);
 | |
| 	    }
 | |
| 	    i__1 = *m - *q;
 | |
| 	    i__2 = *m - *q;
 | |
| 	    i__3 = *m - *q;
 | |
| 	    zungqr_(&i__1, &i__2, &i__3, &v2t[v2t_offset], ldv2t, &work[
 | |
| 		    itauq2], &work[iorgqr], &lorgqrwork, info);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Compute the CSD of the matrix in bidiagonal-block form */
 | |
| 
 | |
|     zbbcsd_(jobu1, jobu2, jobv1t, jobv2t, trans, m, p, q, &theta[1], &rwork[
 | |
| 	    iphi], &u1[u1_offset], ldu1, &u2[u2_offset], ldu2, &v1t[
 | |
| 	    v1t_offset], ldv1t, &v2t[v2t_offset], ldv2t, &rwork[ib11d], &
 | |
| 	    rwork[ib11e], &rwork[ib12d], &rwork[ib12e], &rwork[ib21d], &rwork[
 | |
| 	    ib21e], &rwork[ib22d], &rwork[ib22e], &rwork[ibbcsd], &lbbcsdwork,
 | |
| 	     info);
 | |
| 
 | |
| /*     Permute rows and columns to place identity submatrices in top- */
 | |
| /*     left corner of (1,1)-block and/or bottom-right corner of (1,2)- */
 | |
| /*     block and/or bottom-right corner of (2,1)-block and/or top-left */
 | |
| /*     corner of (2,2)-block */
 | |
| 
 | |
|     if (*q > 0 && wantu2) {
 | |
| 	i__1 = *q;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    iwork[i__] = *m - *p - *q + i__;
 | |
| 	}
 | |
| 	i__1 = *m - *p;
 | |
| 	for (i__ = *q + 1; i__ <= i__1; ++i__) {
 | |
| 	    iwork[i__] = i__ - *q;
 | |
| 	}
 | |
| 	if (colmajor) {
 | |
| 	    i__1 = *m - *p;
 | |
| 	    i__2 = *m - *p;
 | |
| 	    zlapmt_(&c_false, &i__1, &i__2, &u2[u2_offset], ldu2, &iwork[1]);
 | |
| 	} else {
 | |
| 	    i__1 = *m - *p;
 | |
| 	    i__2 = *m - *p;
 | |
| 	    zlapmr_(&c_false, &i__1, &i__2, &u2[u2_offset], ldu2, &iwork[1]);
 | |
| 	}
 | |
|     }
 | |
|     if (*m > 0 && wantv2t) {
 | |
| 	i__1 = *p;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    iwork[i__] = *m - *p - *q + i__;
 | |
| 	}
 | |
| 	i__1 = *m - *q;
 | |
| 	for (i__ = *p + 1; i__ <= i__1; ++i__) {
 | |
| 	    iwork[i__] = i__ - *p;
 | |
| 	}
 | |
| 	if (! colmajor) {
 | |
| 	    i__1 = *m - *q;
 | |
| 	    i__2 = *m - *q;
 | |
| 	    zlapmt_(&c_false, &i__1, &i__2, &v2t[v2t_offset], ldv2t, &iwork[1]
 | |
| 		    );
 | |
| 	} else {
 | |
| 	    i__1 = *m - *q;
 | |
| 	    i__2 = *m - *q;
 | |
| 	    zlapmr_(&c_false, &i__1, &i__2, &v2t[v2t_offset], ldv2t, &iwork[1]
 | |
| 		    );
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End ZUNCSD */
 | |
| 
 | |
| } /* zuncsd_ */
 | |
| 
 |