2028 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			2028 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle_() continue;
 | |
| #define myceiling_(w) {ceil(w)}
 | |
| #define myhuge_(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)
 | |
| #define myexp_(w) my_expfunc(w)
 | |
| 
 | |
| static int my_expfunc(double *x) {int e; (void)frexp(*x,&e); return e;}
 | |
| 
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static doublecomplex c_b1 = {1.,0.};
 | |
| static integer c__1 = 1;
 | |
| static integer c_n1 = -1;
 | |
| static doublereal c_b18 = 2.;
 | |
| static doublereal c_b106 = 1.;
 | |
| 
 | |
| /* > \brief \b ZTRSYL3 */
 | |
| 
 | |
| /* Definition: */
 | |
| /* =========== */
 | |
| 
 | |
| 
 | |
| /* >  \par Purpose */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  ZTRSYL3 solves the complex Sylvester matrix equation: */
 | |
| /* > */
 | |
| /* >     op(A)*X + X*op(B) = scale*C or */
 | |
| /* >     op(A)*X - X*op(B) = scale*C, */
 | |
| /* > */
 | |
| /* >  where op(A) = A or A**H, and  A and B are both upper triangular. A is */
 | |
| /* >  M-by-M and B is N-by-N; the right hand side C and the solution X are */
 | |
| /* >  M-by-N; and scale is an output scale factor, set <= 1 to avoid */
 | |
| /* >  overflow in X. */
 | |
| /* > */
 | |
| /* >  This is the block version of the algorithm. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments */
 | |
| /*  ========= */
 | |
| 
 | |
| /* > \param[in] TRANA */
 | |
| /* > \verbatim */
 | |
| /* >          TRANA is CHARACTER*1 */
 | |
| /* >          Specifies the option op(A): */
 | |
| /* >          = 'N': op(A) = A    (No transpose) */
 | |
| /* >          = 'C': op(A) = A**H (Conjugate transpose) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] TRANB */
 | |
| /* > \verbatim */
 | |
| /* >          TRANB is CHARACTER*1 */
 | |
| /* >          Specifies the option op(B): */
 | |
| /* >          = 'N': op(B) = B    (No transpose) */
 | |
| /* >          = 'C': op(B) = B**H (Conjugate transpose) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] ISGN */
 | |
| /* > \verbatim */
 | |
| /* >          ISGN is INTEGER */
 | |
| /* >          Specifies the sign in the equation: */
 | |
| /* >          = +1: solve op(A)*X + X*op(B) = scale*C */
 | |
| /* >          = -1: solve op(A)*X - X*op(B) = scale*C */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The order of the matrix A, and the number of rows in the */
 | |
| /* >          matrices X and C. M >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix B, and the number of columns in the */
 | |
| /* >          matrices X and C. N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is COMPLEX*16 array, dimension (LDA,M) */
 | |
| /* >          The upper triangular matrix A. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A. LDA >= f2cmax(1,M). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] B */
 | |
| /* > \verbatim */
 | |
| /* >          B is COMPLEX*16 array, dimension (LDB,N) */
 | |
| /* >          The upper triangular matrix B. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDB */
 | |
| /* > \verbatim */
 | |
| /* >          LDB is INTEGER */
 | |
| /* >          The leading dimension of the array B. LDB >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] C */
 | |
| /* > \verbatim */
 | |
| /* >          C is COMPLEX*16 array, dimension (LDC,N) */
 | |
| /* >          On entry, the M-by-N right hand side matrix C. */
 | |
| /* >          On exit, C is overwritten by the solution matrix X. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDC */
 | |
| /* > \verbatim */
 | |
| /* >          LDC is INTEGER */
 | |
| /* >          The leading dimension of the array C. LDC >= f2cmax(1,M) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] SCALE */
 | |
| /* > \verbatim */
 | |
| /* >          SCALE is DOUBLE PRECISION */
 | |
| /* >          The scale factor, scale, set <= 1 to avoid overflow in X. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] SWORK */
 | |
| /* > \verbatim */
 | |
| /* >          SWORK is DOUBLE PRECISION array, dimension (MAX(2, ROWS), */
 | |
| /* >          MAX(1,COLS)). */
 | |
| /* >          On exit, if INFO = 0, SWORK(1) returns the optimal value ROWS */
 | |
| /* >          and SWORK(2) returns the optimal COLS. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDSWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LDSWORK is INTEGER */
 | |
| /* >          LDSWORK >= MAX(2,ROWS), where ROWS = ((M + NB - 1) / NB + 1) */
 | |
| /* >          and NB is the optimal block size. */
 | |
| /* > */
 | |
| /* >          If LDSWORK = -1, then a workspace query is assumed; the routine */
 | |
| /* >          only calculates the optimal dimensions of the SWORK matrix, */
 | |
| /* >          returns these values as the first and second entry of the SWORK */
 | |
| /* >          matrix, and no error message related LWORK is issued by XERBLA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0: successful exit */
 | |
| /* >          < 0: if INFO = -i, the i-th argument had an illegal value */
 | |
| /* >          = 1: A and B have common or very close eigenvalues; perturbed */
 | |
| /* >               values were used to solve the equation (but the matrices */
 | |
| /* >               A and B are unchanged). */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /* > \ingroup complex16SYcomputational */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /*  References: */
 | |
| /*   E. S. Quintana-Orti and R. A. Van De Geijn (2003). Formal derivation of */
 | |
| /*   algorithms: The triangular Sylvester equation, ACM Transactions */
 | |
| /*   on Mathematical Software (TOMS), volume 29, pages 218--243. */
 | |
| 
 | |
| /*   A. Schwarz and C. C. Kjelgaard Mikkelsen (2020). Robust Task-Parallel */
 | |
| /*   Solution of the Triangular Sylvester Equation. Lecture Notes in */
 | |
| /*   Computer Science, vol 12043, pages 82--92, Springer. */
 | |
| 
 | |
| /*  Contributor: */
 | |
| /*   Angelika Schwarz, Umea University, Sweden. */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void ztrsyl3_(char *trana, char *tranb, integer *isgn, 
 | |
| 	integer *m, integer *n, doublecomplex *a, integer *lda, doublecomplex 
 | |
| 	*b, integer *ldb, doublecomplex *c__, integer *ldc, doublereal *scale,
 | |
| 	 doublereal *swork, integer *ldswork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, swork_dim1, 
 | |
| 	    swork_offset, i__1, i__2, i__3, i__4, i__5, i__6;
 | |
|     doublereal d__1, d__2, d__3, d__4;
 | |
|     doublecomplex z__1;
 | |
| 
 | |
|     /* Local variables */
 | |
|     doublereal scal;
 | |
|     doublecomplex csgn;
 | |
|     doublereal anrm, bnrm, cnrm;
 | |
|     integer awrk, bwrk;
 | |
|     doublereal *wnrm, xnrm;
 | |
|     integer i__, j, k, l;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     integer iinfo;
 | |
|     extern /* Subroutine */ void zgemm_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, doublecomplex *, doublecomplex *, integer *, 
 | |
| 	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
 | |
| 	    integer *);
 | |
|     integer i1, i2, j1, j2, k1, k2, l1, l2;
 | |
| //    extern integer myexp_(doublereal *);
 | |
|     integer nb, jj, ll;
 | |
|     extern doublereal dlamch_(char *);
 | |
|     doublereal scaloc, scamin;
 | |
|     extern doublereal dlarmm_(doublereal *, doublereal *, doublereal *);
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen );
 | |
|     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | |
| 	    integer *, integer *, ftnlen, ftnlen);
 | |
|     extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, 
 | |
| 	    integer *, doublereal *);
 | |
|     doublereal bignum;
 | |
|     extern /* Subroutine */ void zdscal_(integer *, doublereal *, 
 | |
| 	    doublecomplex *, integer *), zlascl_(char *, integer *, integer *,
 | |
| 	     doublereal *, doublereal *, integer *, integer *, doublecomplex *
 | |
| 	    , integer *, integer *);
 | |
|     logical notrna, notrnb;
 | |
|     doublereal smlnum;
 | |
|     logical lquery;
 | |
|     extern /* Subroutine */ void ztrsyl_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, doublecomplex *, integer *, doublecomplex *, integer *,
 | |
| 	     doublecomplex *, integer *, doublereal *, integer *);
 | |
|     integer nba, nbb;
 | |
|     doublereal buf, sgn;
 | |
| 
 | |
| 
 | |
| 
 | |
| /*     Decode and Test input parameters */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     b_dim1 = *ldb;
 | |
|     b_offset = 1 + b_dim1 * 1;
 | |
|     b -= b_offset;
 | |
|     c_dim1 = *ldc;
 | |
|     c_offset = 1 + c_dim1 * 1;
 | |
|     c__ -= c_offset;
 | |
|     swork_dim1 = *ldswork;
 | |
|     swork_offset = 1 + swork_dim1 * 1;
 | |
|     swork -= swork_offset;
 | |
| 
 | |
|     /* Function Body */
 | |
|     notrna = lsame_(trana, "N");
 | |
|     notrnb = lsame_(tranb, "N");
 | |
| 
 | |
| /*     Use the same block size for all matrices. */
 | |
| 
 | |
| /* Computing MAX */
 | |
|     i__1 = 8, i__2 = ilaenv_(&c__1, "ZTRSYL", "", m, n, &c_n1, &c_n1, (ftnlen)
 | |
| 	    6, (ftnlen)0);
 | |
|     nb = f2cmax(i__1,i__2);
 | |
| 
 | |
| /*     Compute number of blocks in A and B */
 | |
| 
 | |
| /* Computing MAX */
 | |
|     i__1 = 1, i__2 = (*m + nb - 1) / nb;
 | |
|     nba = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
|     i__1 = 1, i__2 = (*n + nb - 1) / nb;
 | |
|     nbb = f2cmax(i__1,i__2);
 | |
| 
 | |
| /*     Compute workspace */
 | |
| 
 | |
|     *info = 0;
 | |
|     lquery = *ldswork == -1;
 | |
|     if (lquery) {
 | |
| 	*ldswork = 2;
 | |
| 	swork[swork_dim1 + 1] = (doublereal) f2cmax(nba,nbb);
 | |
| 	swork[swork_dim1 + 2] = (doublereal) ((nbb << 1) + nba);
 | |
|     }
 | |
| 
 | |
| /*     Test the input arguments */
 | |
| 
 | |
|     if (! notrna && ! lsame_(trana, "C")) {
 | |
| 	*info = -1;
 | |
|     } else if (! notrnb && ! lsame_(tranb, "C")) {
 | |
| 	*info = -2;
 | |
|     } else if (*isgn != 1 && *isgn != -1) {
 | |
| 	*info = -3;
 | |
|     } else if (*m < 0) {
 | |
| 	*info = -4;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -5;
 | |
|     } else if (*lda < f2cmax(1,*m)) {
 | |
| 	*info = -7;
 | |
|     } else if (*ldb < f2cmax(1,*n)) {
 | |
| 	*info = -9;
 | |
|     } else if (*ldc < f2cmax(1,*m)) {
 | |
| 	*info = -11;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("ZTRSYL3", &i__1, 7);
 | |
| 	return;
 | |
|     } else if (lquery) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     *scale = 1.;
 | |
|     if (*m == 0 || *n == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     wnrm = (doublereal*)malloc(f2cmax(*m,*n)*sizeof(doublereal));
 | |
| /*     Use unblocked code for small problems or if insufficient */
 | |
| /*     workspace is provided */
 | |
| 
 | |
|     if (f2cmin(nba,nbb) == 1 || *ldswork < f2cmax(nba,nbb)) {
 | |
| 	ztrsyl_(trana, tranb, isgn, m, n, &a[a_offset], lda, &b[b_offset], 
 | |
| 		ldb, &c__[c_offset], ldc, scale, info);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Set constants to control overflow */
 | |
| 
 | |
|     smlnum = dlamch_("S");
 | |
|     bignum = 1. / smlnum;
 | |
| 
 | |
| /*     Set local scaling factors. */
 | |
| 
 | |
|     i__1 = nbb;
 | |
|     for (l = 1; l <= i__1; ++l) {
 | |
| 	i__2 = nba;
 | |
| 	for (k = 1; k <= i__2; ++k) {
 | |
| 	    swork[k + l * swork_dim1] = 1.;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Fallback scaling factor to prevent flushing of SWORK( K, L ) to zero. */
 | |
| /*     This scaling is to ensure compatibility with TRSYL and may get flushed. */
 | |
| 
 | |
|     buf = 1.;
 | |
| 
 | |
| /*      Compute upper bounds of blocks of A and B */
 | |
| 
 | |
|     awrk = nbb;
 | |
|     i__1 = nba;
 | |
|     for (k = 1; k <= i__1; ++k) {
 | |
| 	k1 = (k - 1) * nb + 1;
 | |
| /* Computing MIN */
 | |
| 	i__2 = k * nb;
 | |
| 	k2 = f2cmin(i__2,*m) + 1;
 | |
| 	i__2 = nba;
 | |
| 	for (l = k; l <= i__2; ++l) {
 | |
| 	    l1 = (l - 1) * nb + 1;
 | |
| /* Computing MIN */
 | |
| 	    i__3 = l * nb;
 | |
| 	    l2 = f2cmin(i__3,*m) + 1;
 | |
| 	    if (notrna) {
 | |
| 		i__3 = k2 - k1;
 | |
| 		i__4 = l2 - l1;
 | |
| 		swork[k + (awrk + l) * swork_dim1] = zlange_("I", &i__3, &
 | |
| 			i__4, &a[k1 + l1 * a_dim1], lda, wnrm);
 | |
| 	    } else {
 | |
| 		i__3 = k2 - k1;
 | |
| 		i__4 = l2 - l1;
 | |
| 		swork[l + (awrk + k) * swork_dim1] = zlange_("1", &i__3, &
 | |
| 			i__4, &a[k1 + l1 * a_dim1], lda, wnrm);
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|     bwrk = nbb + nba;
 | |
|     i__1 = nbb;
 | |
|     for (k = 1; k <= i__1; ++k) {
 | |
| 	k1 = (k - 1) * nb + 1;
 | |
| /* Computing MIN */
 | |
| 	i__2 = k * nb;
 | |
| 	k2 = f2cmin(i__2,*n) + 1;
 | |
| 	i__2 = nbb;
 | |
| 	for (l = k; l <= i__2; ++l) {
 | |
| 	    l1 = (l - 1) * nb + 1;
 | |
| /* Computing MIN */
 | |
| 	    i__3 = l * nb;
 | |
| 	    l2 = f2cmin(i__3,*n) + 1;
 | |
| 	    if (notrnb) {
 | |
| 		i__3 = k2 - k1;
 | |
| 		i__4 = l2 - l1;
 | |
| 		swork[k + (bwrk + l) * swork_dim1] = zlange_("I", &i__3, &
 | |
| 			i__4, &b[k1 + l1 * b_dim1], ldb, wnrm);
 | |
| 	    } else {
 | |
| 		i__3 = k2 - k1;
 | |
| 		i__4 = l2 - l1;
 | |
| 		swork[l + (bwrk + k) * swork_dim1] = zlange_("1", &i__3, &
 | |
| 			i__4, &b[k1 + l1 * b_dim1], ldb, wnrm);
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     sgn = (doublereal) (*isgn);
 | |
|     z__1.r = sgn, z__1.i = 0.;
 | |
|     csgn.r = z__1.r, csgn.i = z__1.i;
 | |
| 
 | |
|     if (notrna && notrnb) {
 | |
| 
 | |
| /*        Solve    A*X + ISGN*X*B = scale*C. */
 | |
| 
 | |
| /*        The (K,L)th block of X is determined starting from */
 | |
| /*        bottom-left corner column by column by */
 | |
| 
 | |
| /*         A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) */
 | |
| 
 | |
| /*        Where */
 | |
| /*                  M                         L-1 */
 | |
| /*        R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B(J,L)]. */
 | |
| /*                I=K+1                       J=1 */
 | |
| 
 | |
| /*        Start loop over block rows (index = K) and block columns (index = L) */
 | |
| 
 | |
| 	for (k = nba; k >= 1; --k) {
 | |
| 
 | |
| /*           K1: row index of the first row in X( K, L ) */
 | |
| /*           K2: row index of the first row in X( K+1, L ) */
 | |
| /*           so the K2 - K1 is the column count of the block X( K, L ) */
 | |
| 
 | |
| 	    k1 = (k - 1) * nb + 1;
 | |
| /* Computing MIN */
 | |
| 	    i__1 = k * nb;
 | |
| 	    k2 = f2cmin(i__1,*m) + 1;
 | |
| 	    i__1 = nbb;
 | |
| 	    for (l = 1; l <= i__1; ++l) {
 | |
| 
 | |
| /*              L1: column index of the first column in X( K, L ) */
 | |
| /*              L2: column index of the first column in X( K, L + 1) */
 | |
| /*              so that L2 - L1 is the row count of the block X( K, L ) */
 | |
| 
 | |
| 		l1 = (l - 1) * nb + 1;
 | |
| /* Computing MIN */
 | |
| 		i__2 = l * nb;
 | |
| 		l2 = f2cmin(i__2,*n) + 1;
 | |
| 
 | |
| 		i__2 = k2 - k1;
 | |
| 		i__3 = l2 - l1;
 | |
| 		ztrsyl_(trana, tranb, isgn, &i__2, &i__3, &a[k1 + k1 * a_dim1]
 | |
| 			, lda, &b[l1 + l1 * b_dim1], ldb, &c__[k1 + l1 * 
 | |
| 			c_dim1], ldc, &scaloc, &iinfo);
 | |
| 		*info = f2cmax(*info,iinfo);
 | |
| 
 | |
| 		if (scaloc * swork[k + l * swork_dim1] == 0.) {
 | |
| 		    if (scaloc == 0.) {
 | |
| /*                    The magnitude of the largest entry of X(K1:K2-1, L1:L2-1) */
 | |
| /*                    is larger than the product of BIGNUM**2 and cannot be */
 | |
| /*                    represented in the form (1/SCALE)*X(K1:K2-1, L1:L2-1). */
 | |
| /*                    Mark the computation as pointless. */
 | |
| 			buf = 0.;
 | |
| 		    } else {
 | |
| 			i__2 = myexp_(&scaloc);
 | |
| 			buf *= pow_di(&c_b18, &i__2);
 | |
| 		    }
 | |
| 		    i__2 = nbb;
 | |
| 		    for (jj = 1; jj <= i__2; ++jj) {
 | |
| 			i__3 = nba;
 | |
| 			for (ll = 1; ll <= i__3; ++ll) {
 | |
| /*                       Bound by BIGNUM to not introduce Inf. The value */
 | |
| /*                       is irrelevant; corresponding entries of the */
 | |
| /*                       solution will be flushed in consistency scaling. */
 | |
| /* Computing MIN */
 | |
| 			    i__4 = myexp_(&scaloc);
 | |
| 			    d__1 = bignum, d__2 = swork[ll + jj * swork_dim1] 
 | |
| 				    / pow_di(&c_b18, &i__4);
 | |
| 			    swork[ll + jj * swork_dim1] = f2cmin(d__1,d__2);
 | |
| 			}
 | |
| 		    }
 | |
| 		}
 | |
| 		swork[k + l * swork_dim1] = scaloc * swork[k + l * swork_dim1]
 | |
| 			;
 | |
| 		i__2 = k2 - k1;
 | |
| 		i__3 = l2 - l1;
 | |
| 		xnrm = zlange_("I", &i__2, &i__3, &c__[k1 + l1 * c_dim1], ldc,
 | |
| 			 wnrm);
 | |
| 
 | |
| 		for (i__ = k - 1; i__ >= 1; --i__) {
 | |
| 
 | |
| /*                 C( I, L ) := C( I, L ) - A( I, K ) * C( K, L ) */
 | |
| 
 | |
| 		    i1 = (i__ - 1) * nb + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__2 = i__ * nb;
 | |
| 		    i2 = f2cmin(i__2,*m) + 1;
 | |
| 
 | |
| /*                 Compute scaling factor to survive the linear update */
 | |
| /*                 simulating consistent scaling. */
 | |
| 
 | |
| 		    i__2 = i2 - i1;
 | |
| 		    i__3 = l2 - l1;
 | |
| 		    cnrm = zlange_("I", &i__2, &i__3, &c__[i1 + l1 * c_dim1], 
 | |
| 			    ldc, wnrm);
 | |
| /* Computing MIN */
 | |
| 		    d__1 = swork[i__ + l * swork_dim1], d__2 = swork[k + l * 
 | |
| 			    swork_dim1];
 | |
| 		    scamin = f2cmin(d__1,d__2);
 | |
| 		    cnrm *= scamin / swork[i__ + l * swork_dim1];
 | |
| 		    xnrm *= scamin / swork[k + l * swork_dim1];
 | |
| 		    anrm = swork[i__ + (awrk + k) * swork_dim1];
 | |
| 		    scaloc = dlarmm_(&anrm, &xnrm, &cnrm);
 | |
| 		    if (scaloc * scamin == 0.) {
 | |
| /*                    Use second scaling factor to prevent flushing to zero. */
 | |
| 			i__2 = myexp_(&scaloc);
 | |
| 			buf *= pow_di(&c_b18, &i__2);
 | |
| 			i__2 = nbb;
 | |
| 			for (jj = 1; jj <= i__2; ++jj) {
 | |
| 			    i__3 = nba;
 | |
| 			    for (ll = 1; ll <= i__3; ++ll) {
 | |
| /* Computing MIN */
 | |
| 				i__4 = myexp_(&scaloc);
 | |
| 				d__1 = bignum, d__2 = swork[ll + jj * 
 | |
| 					swork_dim1] / pow_di(&c_b18, &i__4);
 | |
| 				swork[ll + jj * swork_dim1] = f2cmin(d__1,d__2);
 | |
| 			    }
 | |
| 			}
 | |
| 			i__2 = myexp_(&scaloc);
 | |
| 			scamin /= pow_di(&c_b18, &i__2);
 | |
| 			i__2 = myexp_(&scaloc);
 | |
| 			scaloc /= pow_di(&c_b18, &i__2);
 | |
| 		    }
 | |
| 		    cnrm *= scaloc;
 | |
| 		    xnrm *= scaloc;
 | |
| 
 | |
| /*                 Simultaneously apply the robust update factor and the */
 | |
| /*                 consistency scaling factor to C( I, L ) and C( K, L ). */
 | |
| 
 | |
| 		    scal = scamin / swork[k + l * swork_dim1] * scaloc;
 | |
| 		    if (scal != 1.) {
 | |
| 			i__2 = l2 - 1;
 | |
| 			for (jj = l1; jj <= i__2; ++jj) {
 | |
| 			    i__3 = k2 - k1;
 | |
| 			    zdscal_(&i__3, &scal, &c__[k1 + jj * c_dim1], &
 | |
| 				    c__1);
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		    scal = scamin / swork[i__ + l * swork_dim1] * scaloc;
 | |
| 		    if (scal != 1.) {
 | |
| 			i__2 = l2 - 1;
 | |
| 			for (ll = l1; ll <= i__2; ++ll) {
 | |
| 			    i__3 = i2 - i1;
 | |
| 			    zdscal_(&i__3, &scal, &c__[i1 + ll * c_dim1], &
 | |
| 				    c__1);
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| /*                 Record current scaling factor */
 | |
| 
 | |
| 		    swork[k + l * swork_dim1] = scamin * scaloc;
 | |
| 		    swork[i__ + l * swork_dim1] = scamin * scaloc;
 | |
| 
 | |
| 		    i__2 = i2 - i1;
 | |
| 		    i__3 = l2 - l1;
 | |
| 		    i__4 = k2 - k1;
 | |
| 		    z__1.r = -1., z__1.i = 0.;
 | |
| 		    zgemm_("N", "N", &i__2, &i__3, &i__4, &z__1, &a[i1 + k1 * 
 | |
| 			    a_dim1], lda, &c__[k1 + l1 * c_dim1], ldc, &c_b1, 
 | |
| 			    &c__[i1 + l1 * c_dim1], ldc)
 | |
| 			    ;
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		i__2 = nbb;
 | |
| 		for (j = l + 1; j <= i__2; ++j) {
 | |
| 
 | |
| /*                 C( K, J ) := C( K, J ) - SGN * C( K, L ) * B( L, J ) */
 | |
| 
 | |
| 		    j1 = (j - 1) * nb + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = j * nb;
 | |
| 		    j2 = f2cmin(i__3,*n) + 1;
 | |
| 
 | |
| /*                 Compute scaling factor to survive the linear update */
 | |
| /*                 simulating consistent scaling. */
 | |
| 
 | |
| 		    i__3 = k2 - k1;
 | |
| 		    i__4 = j2 - j1;
 | |
| 		    cnrm = zlange_("I", &i__3, &i__4, &c__[k1 + j1 * c_dim1], 
 | |
| 			    ldc, wnrm);
 | |
| /* Computing MIN */
 | |
| 		    d__1 = swork[k + j * swork_dim1], d__2 = swork[k + l * 
 | |
| 			    swork_dim1];
 | |
| 		    scamin = f2cmin(d__1,d__2);
 | |
| 		    cnrm *= scamin / swork[k + j * swork_dim1];
 | |
| 		    xnrm *= scamin / swork[k + l * swork_dim1];
 | |
| 		    bnrm = swork[l + (bwrk + j) * swork_dim1];
 | |
| 		    scaloc = dlarmm_(&bnrm, &xnrm, &cnrm);
 | |
| 		    if (scaloc * scamin == 0.) {
 | |
| /*                    Use second scaling factor to prevent flushing to zero. */
 | |
| 			i__3 = myexp_(&scaloc);
 | |
| 			buf *= pow_di(&c_b18, &i__3);
 | |
| 			i__3 = nbb;
 | |
| 			for (jj = 1; jj <= i__3; ++jj) {
 | |
| 			    i__4 = nba;
 | |
| 			    for (ll = 1; ll <= i__4; ++ll) {
 | |
| /* Computing MIN */
 | |
| 				i__5 = myexp_(&scaloc);
 | |
| 				d__1 = bignum, d__2 = swork[ll + jj * 
 | |
| 					swork_dim1] / pow_di(&c_b18, &i__5);
 | |
| 				swork[ll + jj * swork_dim1] = f2cmin(d__1,d__2);
 | |
| 			    }
 | |
| 			}
 | |
| 			i__3 = myexp_(&scaloc);
 | |
| 			scamin /= pow_di(&c_b18, &i__3);
 | |
| 			i__3 = myexp_(&scaloc);
 | |
| 			scaloc /= pow_di(&c_b18, &i__3);
 | |
| 		    }
 | |
| 		    cnrm *= scaloc;
 | |
| 		    xnrm *= scaloc;
 | |
| 
 | |
| /*                 Simultaneously apply the robust update factor and the */
 | |
| /*                 consistency scaling factor to C( K, J ) and C( K, L). */
 | |
| 
 | |
| 		    scal = scamin / swork[k + l * swork_dim1] * scaloc;
 | |
| 		    if (scal != 1.) {
 | |
| 			i__3 = l2 - 1;
 | |
| 			for (ll = l1; ll <= i__3; ++ll) {
 | |
| 			    i__4 = k2 - k1;
 | |
| 			    zdscal_(&i__4, &scal, &c__[k1 + ll * c_dim1], &
 | |
| 				    c__1);
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		    scal = scamin / swork[k + j * swork_dim1] * scaloc;
 | |
| 		    if (scal != 1.) {
 | |
| 			i__3 = j2 - 1;
 | |
| 			for (jj = j1; jj <= i__3; ++jj) {
 | |
| 			    i__4 = k2 - k1;
 | |
| 			    zdscal_(&i__4, &scal, &c__[k1 + jj * c_dim1], &
 | |
| 				    c__1);
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| /*                 Record current scaling factor */
 | |
| 
 | |
| 		    swork[k + l * swork_dim1] = scamin * scaloc;
 | |
| 		    swork[k + j * swork_dim1] = scamin * scaloc;
 | |
| 
 | |
| 		    i__3 = k2 - k1;
 | |
| 		    i__4 = j2 - j1;
 | |
| 		    i__5 = l2 - l1;
 | |
| 		    z__1.r = -csgn.r, z__1.i = -csgn.i;
 | |
| 		    zgemm_("N", "N", &i__3, &i__4, &i__5, &z__1, &c__[k1 + l1 
 | |
| 			    * c_dim1], ldc, &b[l1 + j1 * b_dim1], ldb, &c_b1, 
 | |
| 			    &c__[k1 + j1 * c_dim1], ldc)
 | |
| 			    ;
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|     } else if (! notrna && notrnb) {
 | |
| 
 | |
| /*        Solve    A**H *X + ISGN*X*B = scale*C. */
 | |
| 
 | |
| /*        The (K,L)th block of X is determined starting from */
 | |
| /*        upper-left corner column by column by */
 | |
| 
 | |
| /*          A(K,K)**H*X(K,L) + ISGN*X(K,L)*B(L,L) = C(K,L) - R(K,L) */
 | |
| 
 | |
| /*        Where */
 | |
| /*                   K-1                        L-1 */
 | |
| /*          R(K,L) = SUM [A(I,K)**H*X(I,L)] +ISGN*SUM [X(K,J)*B(J,L)] */
 | |
| /*                   I=1                        J=1 */
 | |
| 
 | |
| /*        Start loop over block rows (index = K) and block columns (index = L) */
 | |
| 
 | |
| 	i__1 = nba;
 | |
| 	for (k = 1; k <= i__1; ++k) {
 | |
| 
 | |
| /*           K1: row index of the first row in X( K, L ) */
 | |
| /*           K2: row index of the first row in X( K+1, L ) */
 | |
| /*           so the K2 - K1 is the column count of the block X( K, L ) */
 | |
| 
 | |
| 	    k1 = (k - 1) * nb + 1;
 | |
| /* Computing MIN */
 | |
| 	    i__2 = k * nb;
 | |
| 	    k2 = f2cmin(i__2,*m) + 1;
 | |
| 	    i__2 = nbb;
 | |
| 	    for (l = 1; l <= i__2; ++l) {
 | |
| 
 | |
| /*              L1: column index of the first column in X( K, L ) */
 | |
| /*              L2: column index of the first column in X( K, L + 1) */
 | |
| /*              so that L2 - L1 is the row count of the block X( K, L ) */
 | |
| 
 | |
| 		l1 = (l - 1) * nb + 1;
 | |
| /* Computing MIN */
 | |
| 		i__3 = l * nb;
 | |
| 		l2 = f2cmin(i__3,*n) + 1;
 | |
| 
 | |
| 		i__3 = k2 - k1;
 | |
| 		i__4 = l2 - l1;
 | |
| 		ztrsyl_(trana, tranb, isgn, &i__3, &i__4, &a[k1 + k1 * a_dim1]
 | |
| 			, lda, &b[l1 + l1 * b_dim1], ldb, &c__[k1 + l1 * 
 | |
| 			c_dim1], ldc, &scaloc, &iinfo);
 | |
| 		*info = f2cmax(*info,iinfo);
 | |
| 
 | |
| 		if (scaloc * swork[k + l * swork_dim1] == 0.) {
 | |
| 		    if (scaloc == 0.) {
 | |
| /*                    The magnitude of the largest entry of X(K1:K2-1, L1:L2-1) */
 | |
| /*                    is larger than the product of BIGNUM**2 and cannot be */
 | |
| /*                    represented in the form (1/SCALE)*X(K1:K2-1, L1:L2-1). */
 | |
| /*                    Mark the computation as pointless. */
 | |
| 			buf = 0.;
 | |
| 		    } else {
 | |
| /*                    Use second scaling factor to prevent flushing to zero. */
 | |
| 			i__3 = myexp_(&scaloc);
 | |
| 			buf *= pow_di(&c_b18, &i__3);
 | |
| 		    }
 | |
| 		    i__3 = nbb;
 | |
| 		    for (jj = 1; jj <= i__3; ++jj) {
 | |
| 			i__4 = nba;
 | |
| 			for (ll = 1; ll <= i__4; ++ll) {
 | |
| /*                       Bound by BIGNUM to not introduce Inf. The value */
 | |
| /*                       is irrelevant; corresponding entries of the */
 | |
| /*                       solution will be flushed in consistency scaling. */
 | |
| /* Computing MIN */
 | |
| 			    i__5 = myexp_(&scaloc);
 | |
| 			    d__1 = bignum, d__2 = swork[ll + jj * swork_dim1] 
 | |
| 				    / pow_di(&c_b18, &i__5);
 | |
| 			    swork[ll + jj * swork_dim1] = f2cmin(d__1,d__2);
 | |
| 			}
 | |
| 		    }
 | |
| 		}
 | |
| 		swork[k + l * swork_dim1] = scaloc * swork[k + l * swork_dim1]
 | |
| 			;
 | |
| 		i__3 = k2 - k1;
 | |
| 		i__4 = l2 - l1;
 | |
| 		xnrm = zlange_("I", &i__3, &i__4, &c__[k1 + l1 * c_dim1], ldc,
 | |
| 			 wnrm);
 | |
| 
 | |
| 		i__3 = nba;
 | |
| 		for (i__ = k + 1; i__ <= i__3; ++i__) {
 | |
| 
 | |
| /*                 C( I, L ) := C( I, L ) - A( K, I )**H * C( K, L ) */
 | |
| 
 | |
| 		    i1 = (i__ - 1) * nb + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__4 = i__ * nb;
 | |
| 		    i2 = f2cmin(i__4,*m) + 1;
 | |
| 
 | |
| /*                 Compute scaling factor to survive the linear update */
 | |
| /*                 simulating consistent scaling. */
 | |
| 
 | |
| 		    i__4 = i2 - i1;
 | |
| 		    i__5 = l2 - l1;
 | |
| 		    cnrm = zlange_("I", &i__4, &i__5, &c__[i1 + l1 * c_dim1], 
 | |
| 			    ldc, wnrm);
 | |
| /* Computing MIN */
 | |
| 		    d__1 = swork[i__ + l * swork_dim1], d__2 = swork[k + l * 
 | |
| 			    swork_dim1];
 | |
| 		    scamin = f2cmin(d__1,d__2);
 | |
| 		    cnrm *= scamin / swork[i__ + l * swork_dim1];
 | |
| 		    xnrm *= scamin / swork[k + l * swork_dim1];
 | |
| 		    anrm = swork[i__ + (awrk + k) * swork_dim1];
 | |
| 		    scaloc = dlarmm_(&anrm, &xnrm, &cnrm);
 | |
| 		    if (scaloc * scamin == 0.) {
 | |
| /*                    Use second scaling factor to prevent flushing to zero. */
 | |
| 			i__4 = myexp_(&scaloc);
 | |
| 			buf *= pow_di(&c_b18, &i__4);
 | |
| 			i__4 = nbb;
 | |
| 			for (jj = 1; jj <= i__4; ++jj) {
 | |
| 			    i__5 = nba;
 | |
| 			    for (ll = 1; ll <= i__5; ++ll) {
 | |
| /* Computing MIN */
 | |
| 				i__6 = myexp_(&scaloc);
 | |
| 				d__1 = bignum, d__2 = swork[ll + jj * 
 | |
| 					swork_dim1] / pow_di(&c_b18, &i__6);
 | |
| 				swork[ll + jj * swork_dim1] = f2cmin(d__1,d__2);
 | |
| 			    }
 | |
| 			}
 | |
| 			i__4 = myexp_(&scaloc);
 | |
| 			scamin /= pow_di(&c_b18, &i__4);
 | |
| 			i__4 = myexp_(&scaloc);
 | |
| 			scaloc /= pow_di(&c_b18, &i__4);
 | |
| 		    }
 | |
| 		    cnrm *= scaloc;
 | |
| 		    xnrm *= scaloc;
 | |
| 
 | |
| /*                 Simultaneously apply the robust update factor and the */
 | |
| /*                 consistency scaling factor to to C( I, L ) and C( K, L). */
 | |
| 
 | |
| 		    scal = scamin / swork[k + l * swork_dim1] * scaloc;
 | |
| 		    if (scal != 1.) {
 | |
| 			i__4 = l2 - 1;
 | |
| 			for (ll = l1; ll <= i__4; ++ll) {
 | |
| 			    i__5 = k2 - k1;
 | |
| 			    zdscal_(&i__5, &scal, &c__[k1 + ll * c_dim1], &
 | |
| 				    c__1);
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		    scal = scamin / swork[i__ + l * swork_dim1] * scaloc;
 | |
| 		    if (scal != 1.) {
 | |
| 			i__4 = l2 - 1;
 | |
| 			for (ll = l1; ll <= i__4; ++ll) {
 | |
| 			    i__5 = i2 - i1;
 | |
| 			    zdscal_(&i__5, &scal, &c__[i1 + ll * c_dim1], &
 | |
| 				    c__1);
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| /*                 Record current scaling factor */
 | |
| 
 | |
| 		    swork[k + l * swork_dim1] = scamin * scaloc;
 | |
| 		    swork[i__ + l * swork_dim1] = scamin * scaloc;
 | |
| 
 | |
| 		    i__4 = i2 - i1;
 | |
| 		    i__5 = l2 - l1;
 | |
| 		    i__6 = k2 - k1;
 | |
| 		    z__1.r = -1., z__1.i = 0.;
 | |
| 		    zgemm_("C", "N", &i__4, &i__5, &i__6, &z__1, &a[k1 + i1 * 
 | |
| 			    a_dim1], lda, &c__[k1 + l1 * c_dim1], ldc, &c_b1, 
 | |
| 			    &c__[i1 + l1 * c_dim1], ldc)
 | |
| 			    ;
 | |
| 		}
 | |
| 
 | |
| 		i__3 = nbb;
 | |
| 		for (j = l + 1; j <= i__3; ++j) {
 | |
| 
 | |
| /*                 C( K, J ) := C( K, J ) - SGN * C( K, L ) * B( L, J ) */
 | |
| 
 | |
| 		    j1 = (j - 1) * nb + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__4 = j * nb;
 | |
| 		    j2 = f2cmin(i__4,*n) + 1;
 | |
| 
 | |
| /*                 Compute scaling factor to survive the linear update */
 | |
| /*                 simulating consistent scaling. */
 | |
| 
 | |
| 		    i__4 = k2 - k1;
 | |
| 		    i__5 = j2 - j1;
 | |
| 		    cnrm = zlange_("I", &i__4, &i__5, &c__[k1 + j1 * c_dim1], 
 | |
| 			    ldc, wnrm);
 | |
| /* Computing MIN */
 | |
| 		    d__1 = swork[k + j * swork_dim1], d__2 = swork[k + l * 
 | |
| 			    swork_dim1];
 | |
| 		    scamin = f2cmin(d__1,d__2);
 | |
| 		    cnrm *= scamin / swork[k + j * swork_dim1];
 | |
| 		    xnrm *= scamin / swork[k + l * swork_dim1];
 | |
| 		    bnrm = swork[l + (bwrk + j) * swork_dim1];
 | |
| 		    scaloc = dlarmm_(&bnrm, &xnrm, &cnrm);
 | |
| 		    if (scaloc * scamin == 0.) {
 | |
| /*                    Use second scaling factor to prevent flushing to zero. */
 | |
| 			i__4 = myexp_(&scaloc);
 | |
| 			buf *= pow_di(&c_b18, &i__4);
 | |
| 			i__4 = nbb;
 | |
| 			for (jj = 1; jj <= i__4; ++jj) {
 | |
| 			    i__5 = nba;
 | |
| 			    for (ll = 1; ll <= i__5; ++ll) {
 | |
| /* Computing MIN */
 | |
| 				i__6 = myexp_(&scaloc);
 | |
| 				d__1 = bignum, d__2 = swork[ll + jj * 
 | |
| 					swork_dim1] / pow_di(&c_b18, &i__6);
 | |
| 				swork[ll + jj * swork_dim1] = f2cmin(d__1,d__2);
 | |
| 			    }
 | |
| 			}
 | |
| 			i__4 = myexp_(&scaloc);
 | |
| 			scamin /= pow_di(&c_b18, &i__4);
 | |
| 			i__4 = myexp_(&scaloc);
 | |
| 			scaloc /= pow_di(&c_b18, &i__4);
 | |
| 		    }
 | |
| 		    cnrm *= scaloc;
 | |
| 		    xnrm *= scaloc;
 | |
| 
 | |
| /*                 Simultaneously apply the robust update factor and the */
 | |
| /*                 consistency scaling factor to to C( K, J ) and C( K, L). */
 | |
| 
 | |
| 		    scal = scamin / swork[k + l * swork_dim1] * scaloc;
 | |
| 		    if (scal != 1.) {
 | |
| 			i__4 = l2 - 1;
 | |
| 			for (ll = l1; ll <= i__4; ++ll) {
 | |
| 			    i__5 = k2 - k1;
 | |
| 			    zdscal_(&i__5, &scal, &c__[k1 + ll * c_dim1], &
 | |
| 				    c__1);
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		    scal = scamin / swork[k + j * swork_dim1] * scaloc;
 | |
| 		    if (scal != 1.) {
 | |
| 			i__4 = j2 - 1;
 | |
| 			for (jj = j1; jj <= i__4; ++jj) {
 | |
| 			    i__5 = k2 - k1;
 | |
| 			    zdscal_(&i__5, &scal, &c__[k1 + jj * c_dim1], &
 | |
| 				    c__1);
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| /*                 Record current scaling factor */
 | |
| 
 | |
| 		    swork[k + l * swork_dim1] = scamin * scaloc;
 | |
| 		    swork[k + j * swork_dim1] = scamin * scaloc;
 | |
| 
 | |
| 		    i__4 = k2 - k1;
 | |
| 		    i__5 = j2 - j1;
 | |
| 		    i__6 = l2 - l1;
 | |
| 		    z__1.r = -csgn.r, z__1.i = -csgn.i;
 | |
| 		    zgemm_("N", "N", &i__4, &i__5, &i__6, &z__1, &c__[k1 + l1 
 | |
| 			    * c_dim1], ldc, &b[l1 + j1 * b_dim1], ldb, &c_b1, 
 | |
| 			    &c__[k1 + j1 * c_dim1], ldc)
 | |
| 			    ;
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|     } else if (! notrna && ! notrnb) {
 | |
| 
 | |
| /*        Solve    A**H *X + ISGN*X*B**H = scale*C. */
 | |
| 
 | |
| /*        The (K,L)th block of X is determined starting from */
 | |
| /*        top-right corner column by column by */
 | |
| 
 | |
| /*           A(K,K)**H*X(K,L) + ISGN*X(K,L)*B(L,L)**H = C(K,L) - R(K,L) */
 | |
| 
 | |
| /*        Where */
 | |
| /*                     K-1                          N */
 | |
| /*            R(K,L) = SUM [A(I,K)**H*X(I,L)] + ISGN*SUM [X(K,J)*B(L,J)**H]. */
 | |
| /*                     I=1                        J=L+1 */
 | |
| 
 | |
| /*        Start loop over block rows (index = K) and block columns (index = L) */
 | |
| 
 | |
| 	i__1 = nba;
 | |
| 	for (k = 1; k <= i__1; ++k) {
 | |
| 
 | |
| /*           K1: row index of the first row in X( K, L ) */
 | |
| /*           K2: row index of the first row in X( K+1, L ) */
 | |
| /*           so the K2 - K1 is the column count of the block X( K, L ) */
 | |
| 
 | |
| 	    k1 = (k - 1) * nb + 1;
 | |
| /* Computing MIN */
 | |
| 	    i__2 = k * nb;
 | |
| 	    k2 = f2cmin(i__2,*m) + 1;
 | |
| 	    for (l = nbb; l >= 1; --l) {
 | |
| 
 | |
| /*              L1: column index of the first column in X( K, L ) */
 | |
| /*              L2: column index of the first column in X( K, L + 1) */
 | |
| /*              so that L2 - L1 is the row count of the block X( K, L ) */
 | |
| 
 | |
| 		l1 = (l - 1) * nb + 1;
 | |
| /* Computing MIN */
 | |
| 		i__2 = l * nb;
 | |
| 		l2 = f2cmin(i__2,*n) + 1;
 | |
| 
 | |
| 		i__2 = k2 - k1;
 | |
| 		i__3 = l2 - l1;
 | |
| 		ztrsyl_(trana, tranb, isgn, &i__2, &i__3, &a[k1 + k1 * a_dim1]
 | |
| 			, lda, &b[l1 + l1 * b_dim1], ldb, &c__[k1 + l1 * 
 | |
| 			c_dim1], ldc, &scaloc, &iinfo);
 | |
| 		*info = f2cmax(*info,iinfo);
 | |
| 
 | |
| 		if (scaloc * swork[k + l * swork_dim1] == 0.) {
 | |
| 		    if (scaloc == 0.) {
 | |
| /*                    The magnitude of the largest entry of X(K1:K2-1, L1:L2-1) */
 | |
| /*                    is larger than the product of BIGNUM**2 and cannot be */
 | |
| /*                    represented in the form (1/SCALE)*X(K1:K2-1, L1:L2-1). */
 | |
| /*                    Mark the computation as pointless. */
 | |
| 			buf = 0.;
 | |
| 		    } else {
 | |
| /*                    Use second scaling factor to prevent flushing to zero. */
 | |
| 			i__2 = myexp_(&scaloc);
 | |
| 			buf *= pow_di(&c_b18, &i__2);
 | |
| 		    }
 | |
| 		    i__2 = nbb;
 | |
| 		    for (jj = 1; jj <= i__2; ++jj) {
 | |
| 			i__3 = nba;
 | |
| 			for (ll = 1; ll <= i__3; ++ll) {
 | |
| /*                       Bound by BIGNUM to not introduce Inf. The value */
 | |
| /*                       is irrelevant; corresponding entries of the */
 | |
| /*                       solution will be flushed in consistency scaling. */
 | |
| /* Computing MIN */
 | |
| 			    i__4 = myexp_(&scaloc);
 | |
| 			    d__1 = bignum, d__2 = swork[ll + jj * swork_dim1] 
 | |
| 				    / pow_di(&c_b18, &i__4);
 | |
| 			    swork[ll + jj * swork_dim1] = f2cmin(d__1,d__2);
 | |
| 			}
 | |
| 		    }
 | |
| 		}
 | |
| 		swork[k + l * swork_dim1] = scaloc * swork[k + l * swork_dim1]
 | |
| 			;
 | |
| 		i__2 = k2 - k1;
 | |
| 		i__3 = l2 - l1;
 | |
| 		xnrm = zlange_("I", &i__2, &i__3, &c__[k1 + l1 * c_dim1], ldc,
 | |
| 			 wnrm);
 | |
| 
 | |
| 		i__2 = nba;
 | |
| 		for (i__ = k + 1; i__ <= i__2; ++i__) {
 | |
| 
 | |
| /*                 C( I, L ) := C( I, L ) - A( K, I )**H * C( K, L ) */
 | |
| 
 | |
| 		    i1 = (i__ - 1) * nb + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = i__ * nb;
 | |
| 		    i2 = f2cmin(i__3,*m) + 1;
 | |
| 
 | |
| /*                 Compute scaling factor to survive the linear update */
 | |
| /*                 simulating consistent scaling. */
 | |
| 
 | |
| 		    i__3 = i2 - i1;
 | |
| 		    i__4 = l2 - l1;
 | |
| 		    cnrm = zlange_("I", &i__3, &i__4, &c__[i1 + l1 * c_dim1], 
 | |
| 			    ldc, wnrm);
 | |
| /* Computing MIN */
 | |
| 		    d__1 = swork[i__ + l * swork_dim1], d__2 = swork[k + l * 
 | |
| 			    swork_dim1];
 | |
| 		    scamin = f2cmin(d__1,d__2);
 | |
| 		    cnrm *= scamin / swork[i__ + l * swork_dim1];
 | |
| 		    xnrm *= scamin / swork[k + l * swork_dim1];
 | |
| 		    anrm = swork[i__ + (awrk + k) * swork_dim1];
 | |
| 		    scaloc = dlarmm_(&anrm, &xnrm, &cnrm);
 | |
| 		    if (scaloc * scamin == 0.) {
 | |
| /*                    Use second scaling factor to prevent flushing to zero. */
 | |
| 			i__3 = myexp_(&scaloc);
 | |
| 			buf *= pow_di(&c_b18, &i__3);
 | |
| 			i__3 = nbb;
 | |
| 			for (jj = 1; jj <= i__3; ++jj) {
 | |
| 			    i__4 = nba;
 | |
| 			    for (ll = 1; ll <= i__4; ++ll) {
 | |
| /* Computing MIN */
 | |
| 				i__5 = myexp_(&scaloc);
 | |
| 				d__1 = bignum, d__2 = swork[ll + jj * 
 | |
| 					swork_dim1] / pow_di(&c_b18, &i__5);
 | |
| 				swork[ll + jj * swork_dim1] = f2cmin(d__1,d__2);
 | |
| 			    }
 | |
| 			}
 | |
| 			i__3 = myexp_(&scaloc);
 | |
| 			scamin /= pow_di(&c_b18, &i__3);
 | |
| 			i__3 = myexp_(&scaloc);
 | |
| 			scaloc /= pow_di(&c_b18, &i__3);
 | |
| 		    }
 | |
| 		    cnrm *= scaloc;
 | |
| 		    xnrm *= scaloc;
 | |
| 
 | |
| /*                 Simultaneously apply the robust update factor and the */
 | |
| /*                 consistency scaling factor to C( I, L ) and C( K, L). */
 | |
| 
 | |
| 		    scal = scamin / swork[k + l * swork_dim1] * scaloc;
 | |
| 		    if (scal != 1.) {
 | |
| 			i__3 = l2 - 1;
 | |
| 			for (ll = l1; ll <= i__3; ++ll) {
 | |
| 			    i__4 = k2 - k1;
 | |
| 			    zdscal_(&i__4, &scal, &c__[k1 + ll * c_dim1], &
 | |
| 				    c__1);
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		    scal = scamin / swork[i__ + l * swork_dim1] * scaloc;
 | |
| 		    if (scal != 1.) {
 | |
| 			i__3 = l2 - 1;
 | |
| 			for (ll = l1; ll <= i__3; ++ll) {
 | |
| 			    i__4 = i2 - i1;
 | |
| 			    zdscal_(&i__4, &scal, &c__[i1 + ll * c_dim1], &
 | |
| 				    c__1);
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| /*                 Record current scaling factor */
 | |
| 
 | |
| 		    swork[k + l * swork_dim1] = scamin * scaloc;
 | |
| 		    swork[i__ + l * swork_dim1] = scamin * scaloc;
 | |
| 
 | |
| 		    i__3 = i2 - i1;
 | |
| 		    i__4 = l2 - l1;
 | |
| 		    i__5 = k2 - k1;
 | |
| 		    z__1.r = -1., z__1.i = 0.;
 | |
| 		    zgemm_("C", "N", &i__3, &i__4, &i__5, &z__1, &a[k1 + i1 * 
 | |
| 			    a_dim1], lda, &c__[k1 + l1 * c_dim1], ldc, &c_b1, 
 | |
| 			    &c__[i1 + l1 * c_dim1], ldc)
 | |
| 			    ;
 | |
| 		}
 | |
| 
 | |
| 		i__2 = l - 1;
 | |
| 		for (j = 1; j <= i__2; ++j) {
 | |
| 
 | |
| /*                 C( K, J ) := C( K, J ) - SGN * C( K, L ) * B( J, L )**H */
 | |
| 
 | |
| 		    j1 = (j - 1) * nb + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__3 = j * nb;
 | |
| 		    j2 = f2cmin(i__3,*n) + 1;
 | |
| 
 | |
| /*                 Compute scaling factor to survive the linear update */
 | |
| /*                 simulating consistent scaling. */
 | |
| 
 | |
| 		    i__3 = k2 - k1;
 | |
| 		    i__4 = j2 - j1;
 | |
| 		    cnrm = zlange_("I", &i__3, &i__4, &c__[k1 + j1 * c_dim1], 
 | |
| 			    ldc, wnrm);
 | |
| /* Computing MIN */
 | |
| 		    d__1 = swork[k + j * swork_dim1], d__2 = swork[k + l * 
 | |
| 			    swork_dim1];
 | |
| 		    scamin = f2cmin(d__1,d__2);
 | |
| 		    cnrm *= scamin / swork[k + j * swork_dim1];
 | |
| 		    xnrm *= scamin / swork[k + l * swork_dim1];
 | |
| 		    bnrm = swork[l + (bwrk + j) * swork_dim1];
 | |
| 		    scaloc = dlarmm_(&bnrm, &xnrm, &cnrm);
 | |
| 		    if (scaloc * scamin == 0.) {
 | |
| /*                    Use second scaling factor to prevent flushing to zero. */
 | |
| 			i__3 = myexp_(&scaloc);
 | |
| 			buf *= pow_di(&c_b18, &i__3);
 | |
| 			i__3 = nbb;
 | |
| 			for (jj = 1; jj <= i__3; ++jj) {
 | |
| 			    i__4 = nba;
 | |
| 			    for (ll = 1; ll <= i__4; ++ll) {
 | |
| /* Computing MIN */
 | |
| 				i__5 = myexp_(&scaloc);
 | |
| 				d__1 = bignum, d__2 = swork[ll + jj * 
 | |
| 					swork_dim1] / pow_di(&c_b18, &i__5);
 | |
| 				swork[ll + jj * swork_dim1] = f2cmin(d__1,d__2);
 | |
| 			    }
 | |
| 			}
 | |
| 			i__3 = myexp_(&scaloc);
 | |
| 			scamin /= pow_di(&c_b18, &i__3);
 | |
| 			i__3 = myexp_(&scaloc);
 | |
| 			scaloc /= pow_di(&c_b18, &i__3);
 | |
| 		    }
 | |
| 		    cnrm *= scaloc;
 | |
| 		    xnrm *= scaloc;
 | |
| 
 | |
| /*                 Simultaneously apply the robust update factor and the */
 | |
| /*                 consistency scaling factor to C( K, J ) and C( K, L). */
 | |
| 
 | |
| 		    scal = scamin / swork[k + l * swork_dim1] * scaloc;
 | |
| 		    if (scal != 1.) {
 | |
| 			i__3 = l2 - 1;
 | |
| 			for (ll = l1; ll <= i__3; ++ll) {
 | |
| 			    i__4 = k2 - k1;
 | |
| 			    zdscal_(&i__4, &scal, &c__[k1 + ll * c_dim1], &
 | |
| 				    c__1);
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		    scal = scamin / swork[k + j * swork_dim1] * scaloc;
 | |
| 		    if (scal != 1.) {
 | |
| 			i__3 = j2 - 1;
 | |
| 			for (jj = j1; jj <= i__3; ++jj) {
 | |
| 			    i__4 = k2 - k1;
 | |
| 			    zdscal_(&i__4, &scal, &c__[k1 + jj * c_dim1], &
 | |
| 				    c__1);
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| /*                 Record current scaling factor */
 | |
| 
 | |
| 		    swork[k + l * swork_dim1] = scamin * scaloc;
 | |
| 		    swork[k + j * swork_dim1] = scamin * scaloc;
 | |
| 
 | |
| 		    i__3 = k2 - k1;
 | |
| 		    i__4 = j2 - j1;
 | |
| 		    i__5 = l2 - l1;
 | |
| 		    z__1.r = -csgn.r, z__1.i = -csgn.i;
 | |
| 		    zgemm_("N", "C", &i__3, &i__4, &i__5, &z__1, &c__[k1 + l1 
 | |
| 			    * c_dim1], ldc, &b[j1 + l1 * b_dim1], ldb, &c_b1, 
 | |
| 			    &c__[k1 + j1 * c_dim1], ldc)
 | |
| 			    ;
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|     } else if (notrna && ! notrnb) {
 | |
| 
 | |
| /*        Solve    A*X + ISGN*X*B**H = scale*C. */
 | |
| 
 | |
| /*        The (K,L)th block of X is determined starting from */
 | |
| /*        bottom-right corner column by column by */
 | |
| 
 | |
| /*            A(K,K)*X(K,L) + ISGN*X(K,L)*B(L,L)**H = C(K,L) - R(K,L) */
 | |
| 
 | |
| /*        Where */
 | |
| /*                      M                          N */
 | |
| /*            R(K,L) = SUM [A(K,I)*X(I,L)] + ISGN*SUM [X(K,J)*B(L,J)**H]. */
 | |
| /*                    I=K+1                      J=L+1 */
 | |
| 
 | |
| /*        Start loop over block rows (index = K) and block columns (index = L) */
 | |
| 
 | |
| 	for (k = nba; k >= 1; --k) {
 | |
| 
 | |
| /*           K1: row index of the first row in X( K, L ) */
 | |
| /*           K2: row index of the first row in X( K+1, L ) */
 | |
| /*           so the K2 - K1 is the column count of the block X( K, L ) */
 | |
| 
 | |
| 	    k1 = (k - 1) * nb + 1;
 | |
| /* Computing MIN */
 | |
| 	    i__1 = k * nb;
 | |
| 	    k2 = f2cmin(i__1,*m) + 1;
 | |
| 	    for (l = nbb; l >= 1; --l) {
 | |
| 
 | |
| /*              L1: column index of the first column in X( K, L ) */
 | |
| /*              L2: column index of the first column in X( K, L + 1) */
 | |
| /*              so that L2 - L1 is the row count of the block X( K, L ) */
 | |
| 
 | |
| 		l1 = (l - 1) * nb + 1;
 | |
| /* Computing MIN */
 | |
| 		i__1 = l * nb;
 | |
| 		l2 = f2cmin(i__1,*n) + 1;
 | |
| 
 | |
| 		i__1 = k2 - k1;
 | |
| 		i__2 = l2 - l1;
 | |
| 		ztrsyl_(trana, tranb, isgn, &i__1, &i__2, &a[k1 + k1 * a_dim1]
 | |
| 			, lda, &b[l1 + l1 * b_dim1], ldb, &c__[k1 + l1 * 
 | |
| 			c_dim1], ldc, &scaloc, &iinfo);
 | |
| 		*info = f2cmax(*info,iinfo);
 | |
| 
 | |
| 		if (scaloc * swork[k + l * swork_dim1] == 0.) {
 | |
| 		    if (scaloc == 0.) {
 | |
| /*                    The magnitude of the largest entry of X(K1:K2-1, L1:L2-1) */
 | |
| /*                    is larger than the product of BIGNUM**2 and cannot be */
 | |
| /*                    represented in the form (1/SCALE)*X(K1:K2-1, L1:L2-1). */
 | |
| /*                    Mark the computation as pointless. */
 | |
| 			buf = 0.;
 | |
| 		    } else {
 | |
| /*                    Use second scaling factor to prevent flushing to zero. */
 | |
| 			i__1 = myexp_(&scaloc);
 | |
| 			buf *= pow_di(&c_b18, &i__1);
 | |
| 		    }
 | |
| 		    i__1 = nbb;
 | |
| 		    for (jj = 1; jj <= i__1; ++jj) {
 | |
| 			i__2 = nba;
 | |
| 			for (ll = 1; ll <= i__2; ++ll) {
 | |
| /*                       Bound by BIGNUM to not introduce Inf. The value */
 | |
| /*                       is irrelevant; corresponding entries of the */
 | |
| /*                       solution will be flushed in consistency scaling. */
 | |
| /* Computing MIN */
 | |
| 			    i__3 = myexp_(&scaloc);
 | |
| 			    d__1 = bignum, d__2 = swork[ll + jj * swork_dim1] 
 | |
| 				    / pow_di(&c_b18, &i__3);
 | |
| 			    swork[ll + jj * swork_dim1] = f2cmin(d__1,d__2);
 | |
| 			}
 | |
| 		    }
 | |
| 		}
 | |
| 		swork[k + l * swork_dim1] = scaloc * swork[k + l * swork_dim1]
 | |
| 			;
 | |
| 		i__1 = k2 - k1;
 | |
| 		i__2 = l2 - l1;
 | |
| 		xnrm = zlange_("I", &i__1, &i__2, &c__[k1 + l1 * c_dim1], ldc,
 | |
| 			 wnrm);
 | |
| 
 | |
| 		i__1 = k - 1;
 | |
| 		for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 
 | |
| /*                 C( I, L ) := C( I, L ) - A( I, K ) * C( K, L ) */
 | |
| 
 | |
| 		    i1 = (i__ - 1) * nb + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__2 = i__ * nb;
 | |
| 		    i2 = f2cmin(i__2,*m) + 1;
 | |
| 
 | |
| /*                 Compute scaling factor to survive the linear update */
 | |
| /*                 simulating consistent scaling. */
 | |
| 
 | |
| 		    i__2 = i2 - i1;
 | |
| 		    i__3 = l2 - l1;
 | |
| 		    cnrm = zlange_("I", &i__2, &i__3, &c__[i1 + l1 * c_dim1], 
 | |
| 			    ldc, wnrm);
 | |
| /* Computing MIN */
 | |
| 		    d__1 = swork[i__ + l * swork_dim1], d__2 = swork[k + l * 
 | |
| 			    swork_dim1];
 | |
| 		    scamin = f2cmin(d__1,d__2);
 | |
| 		    cnrm *= scamin / swork[i__ + l * swork_dim1];
 | |
| 		    xnrm *= scamin / swork[k + l * swork_dim1];
 | |
| 		    anrm = swork[i__ + (awrk + k) * swork_dim1];
 | |
| 		    scaloc = dlarmm_(&anrm, &xnrm, &cnrm);
 | |
| 		    if (scaloc * scamin == 0.) {
 | |
| /*                    Use second scaling factor to prevent flushing to zero. */
 | |
| 			i__2 = myexp_(&scaloc);
 | |
| 			buf *= pow_di(&c_b18, &i__2);
 | |
| 			i__2 = nbb;
 | |
| 			for (jj = 1; jj <= i__2; ++jj) {
 | |
| 			    i__3 = nba;
 | |
| 			    for (ll = 1; ll <= i__3; ++ll) {
 | |
| /* Computing MIN */
 | |
| 				i__4 = myexp_(&scaloc);
 | |
| 				d__1 = bignum, d__2 = swork[ll + jj * 
 | |
| 					swork_dim1] / pow_di(&c_b18, &i__4);
 | |
| 				swork[ll + jj * swork_dim1] = f2cmin(d__1,d__2);
 | |
| 			    }
 | |
| 			}
 | |
| 			i__2 = myexp_(&scaloc);
 | |
| 			scamin /= pow_di(&c_b18, &i__2);
 | |
| 			i__2 = myexp_(&scaloc);
 | |
| 			scaloc /= pow_di(&c_b18, &i__2);
 | |
| 		    }
 | |
| 		    cnrm *= scaloc;
 | |
| 		    xnrm *= scaloc;
 | |
| 
 | |
| /*                 Simultaneously apply the robust update factor and the */
 | |
| /*                 consistency scaling factor to C( I, L ) and C( K, L). */
 | |
| 
 | |
| 		    scal = scamin / swork[k + l * swork_dim1] * scaloc;
 | |
| 		    if (scal != 1.) {
 | |
| 			i__2 = l2 - 1;
 | |
| 			for (ll = l1; ll <= i__2; ++ll) {
 | |
| 			    i__3 = k2 - k1;
 | |
| 			    zdscal_(&i__3, &scal, &c__[k1 + ll * c_dim1], &
 | |
| 				    c__1);
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		    scal = scamin / swork[i__ + l * swork_dim1] * scaloc;
 | |
| 		    if (scal != 1.) {
 | |
| 			i__2 = l2 - 1;
 | |
| 			for (ll = l1; ll <= i__2; ++ll) {
 | |
| 			    i__3 = i2 - i1;
 | |
| 			    zdscal_(&i__3, &scal, &c__[i1 + ll * c_dim1], &
 | |
| 				    c__1);
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| /*                 Record current scaling factor */
 | |
| 
 | |
| 		    swork[k + l * swork_dim1] = scamin * scaloc;
 | |
| 		    swork[i__ + l * swork_dim1] = scamin * scaloc;
 | |
| 
 | |
| 		    i__2 = i2 - i1;
 | |
| 		    i__3 = l2 - l1;
 | |
| 		    i__4 = k2 - k1;
 | |
| 		    z__1.r = -1., z__1.i = 0.;
 | |
| 		    zgemm_("N", "N", &i__2, &i__3, &i__4, &z__1, &a[i1 + k1 * 
 | |
| 			    a_dim1], lda, &c__[k1 + l1 * c_dim1], ldc, &c_b1, 
 | |
| 			    &c__[i1 + l1 * c_dim1], ldc)
 | |
| 			    ;
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		i__1 = l - 1;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 
 | |
| /*                 C( K, J ) := C( K, J ) - SGN * C( K, L ) * B( J, L )**H */
 | |
| 
 | |
| 		    j1 = (j - 1) * nb + 1;
 | |
| /* Computing MIN */
 | |
| 		    i__2 = j * nb;
 | |
| 		    j2 = f2cmin(i__2,*n) + 1;
 | |
| 
 | |
| /*                 Compute scaling factor to survive the linear update */
 | |
| /*                 simulating consistent scaling. */
 | |
| 
 | |
| 		    i__2 = k2 - k1;
 | |
| 		    i__3 = j2 - j1;
 | |
| 		    cnrm = zlange_("I", &i__2, &i__3, &c__[k1 + j1 * c_dim1], 
 | |
| 			    ldc, wnrm);
 | |
| /* Computing MIN */
 | |
| 		    d__1 = swork[k + j * swork_dim1], d__2 = swork[k + l * 
 | |
| 			    swork_dim1];
 | |
| 		    scamin = f2cmin(d__1,d__2);
 | |
| 		    cnrm *= scamin / swork[k + j * swork_dim1];
 | |
| 		    xnrm *= scamin / swork[k + l * swork_dim1];
 | |
| 		    bnrm = swork[l + (bwrk + j) * swork_dim1];
 | |
| 		    scaloc = dlarmm_(&bnrm, &xnrm, &cnrm);
 | |
| 		    if (scaloc * scamin == 0.) {
 | |
| /*                    Use second scaling factor to prevent flushing to zero. */
 | |
| 			i__2 = myexp_(&scaloc);
 | |
| 			buf *= pow_di(&c_b18, &i__2);
 | |
| 			i__2 = nbb;
 | |
| 			for (jj = 1; jj <= i__2; ++jj) {
 | |
| 			    i__3 = nba;
 | |
| 			    for (ll = 1; ll <= i__3; ++ll) {
 | |
| /* Computing MIN */
 | |
| 				i__4 = myexp_(&scaloc);
 | |
| 				d__1 = bignum, d__2 = swork[ll + jj * 
 | |
| 					swork_dim1] / pow_di(&c_b18, &i__4);
 | |
| 				swork[ll + jj * swork_dim1] = f2cmin(d__1,d__2);
 | |
| 			    }
 | |
| 			}
 | |
| 			i__2 = myexp_(&scaloc);
 | |
| 			scamin /= pow_di(&c_b18, &i__2);
 | |
| 			i__2 = myexp_(&scaloc);
 | |
| 			scaloc /= pow_di(&c_b18, &i__2);
 | |
| 		    }
 | |
| 		    cnrm *= scaloc;
 | |
| 		    xnrm *= scaloc;
 | |
| 
 | |
| /*                 Simultaneously apply the robust update factor and the */
 | |
| /*                 consistency scaling factor to C( K, J ) and C( K, L). */
 | |
| 
 | |
| 		    scal = scamin / swork[k + l * swork_dim1] * scaloc;
 | |
| 		    if (scal != 1.) {
 | |
| 			i__2 = l2 - 1;
 | |
| 			for (jj = l1; jj <= i__2; ++jj) {
 | |
| 			    i__3 = k2 - k1;
 | |
| 			    zdscal_(&i__3, &scal, &c__[k1 + jj * c_dim1], &
 | |
| 				    c__1);
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		    scal = scamin / swork[k + j * swork_dim1] * scaloc;
 | |
| 		    if (scal != 1.) {
 | |
| 			i__2 = j2 - 1;
 | |
| 			for (jj = j1; jj <= i__2; ++jj) {
 | |
| 			    i__3 = k2 - k1;
 | |
| 			    zdscal_(&i__3, &scal, &c__[k1 + jj * c_dim1], &
 | |
| 				    c__1);
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| /*                 Record current scaling factor */
 | |
| 
 | |
| 		    swork[k + l * swork_dim1] = scamin * scaloc;
 | |
| 		    swork[k + j * swork_dim1] = scamin * scaloc;
 | |
| 
 | |
| 		    i__2 = k2 - k1;
 | |
| 		    i__3 = j2 - j1;
 | |
| 		    i__4 = l2 - l1;
 | |
| 		    z__1.r = -csgn.r, z__1.i = -csgn.i;
 | |
| 		    zgemm_("N", "C", &i__2, &i__3, &i__4, &z__1, &c__[k1 + l1 
 | |
| 			    * c_dim1], ldc, &b[j1 + l1 * b_dim1], ldb, &c_b1, 
 | |
| 			    &c__[k1 + j1 * c_dim1], ldc)
 | |
| 			    ;
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
|     }
 | |
| 
 | |
|     free(wnrm);
 | |
| 
 | |
| /*     Reduce local scaling factors */
 | |
| 
 | |
|     *scale = swork[swork_dim1 + 1];
 | |
|     i__1 = nba;
 | |
|     for (k = 1; k <= i__1; ++k) {
 | |
| 	i__2 = nbb;
 | |
| 	for (l = 1; l <= i__2; ++l) {
 | |
| /* Computing MIN */
 | |
| 	    d__1 = *scale, d__2 = swork[k + l * swork_dim1];
 | |
| 	    *scale = f2cmin(d__1,d__2);
 | |
| 	}
 | |
|     }
 | |
|     if (*scale == 0.) {
 | |
| 
 | |
| /*        The magnitude of the largest entry of the solution is larger */
 | |
| /*        than the product of BIGNUM**2 and cannot be represented in the */
 | |
| /*        form (1/SCALE)*X if SCALE is DOUBLE PRECISION. Set SCALE to */
 | |
| /*        zero and give up. */
 | |
| 
 | |
| 	swork[swork_dim1 + 1] = (doublereal) f2cmax(nba,nbb);
 | |
| 	swork[swork_dim1 + 2] = (doublereal) ((nbb << 1) + nba);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Realize consistent scaling */
 | |
| 
 | |
|     i__1 = nba;
 | |
|     for (k = 1; k <= i__1; ++k) {
 | |
| 	k1 = (k - 1) * nb + 1;
 | |
| /* Computing MIN */
 | |
| 	i__2 = k * nb;
 | |
| 	k2 = f2cmin(i__2,*m) + 1;
 | |
| 	i__2 = nbb;
 | |
| 	for (l = 1; l <= i__2; ++l) {
 | |
| 	    l1 = (l - 1) * nb + 1;
 | |
| /* Computing MIN */
 | |
| 	    i__3 = l * nb;
 | |
| 	    l2 = f2cmin(i__3,*n) + 1;
 | |
| 	    scal = *scale / swork[k + l * swork_dim1];
 | |
| 	    if (scal != 1.) {
 | |
| 		i__3 = l2 - 1;
 | |
| 		for (ll = l1; ll <= i__3; ++ll) {
 | |
| 		    i__4 = k2 - k1;
 | |
| 		    zdscal_(&i__4, &scal, &c__[k1 + ll * c_dim1], &c__1);
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (buf != 1. && buf > 0.) {
 | |
| 
 | |
| /*        Decrease SCALE as much as possible. */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 	d__1 = *scale / smlnum, d__2 = 1. / buf;
 | |
| 	scaloc = f2cmin(d__1,d__2);
 | |
| 	buf *= scaloc;
 | |
| 	*scale /= scaloc;
 | |
|     }
 | |
| 
 | |
|     if (buf != 1. && buf > 0.) {
 | |
| 
 | |
| /*        In case of overly aggressive scaling during the computation, */
 | |
| /*        flushing of the global scale factor may be prevented by */
 | |
| /*        undoing some of the scaling. This step is to ensure that */
 | |
| /*        this routine flushes only scale factors that TRSYL also */
 | |
| /*        flushes and be usable as a drop-in replacement. */
 | |
| 
 | |
| /*        How much can the normwise largest entry be upscaled? */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 	i__1 = c_dim1 + 1;
 | |
| 	d__3 = (d__1 = c__[i__1].r, abs(d__1)), d__4 = (d__2 = d_imag(&c__[
 | |
| 		c_dim1 + 1]), abs(d__2));
 | |
| 	scal = f2cmax(d__3,d__4);
 | |
| 	i__1 = *m;
 | |
| 	for (k = 1; k <= i__1; ++k) {
 | |
| 	    i__2 = *n;
 | |
| 	    for (l = 1; l <= i__2; ++l) {
 | |
| /* Computing MAX */
 | |
| 		i__3 = k + l * c_dim1;
 | |
| 		d__3 = scal, d__4 = (d__1 = c__[i__3].r, abs(d__1)), d__3 = 
 | |
| 			f2cmax(d__3,d__4), d__4 = (d__2 = d_imag(&c__[k + l * 
 | |
| 			c_dim1]), abs(d__2));
 | |
| 		scal = f2cmax(d__3,d__4);
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        Increase BUF as close to 1 as possible and apply scaling. */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 	d__1 = bignum / scal, d__2 = 1. / buf;
 | |
| 	scaloc = f2cmin(d__1,d__2);
 | |
| 	buf *= scaloc;
 | |
| 	zlascl_("G", &c_n1, &c_n1, &c_b106, &scaloc, m, n, &c__[c_offset], 
 | |
| 		ldc, &iinfo);
 | |
|     }
 | |
| 
 | |
| /*     Combine with buffer scaling factor. SCALE will be flushed if */
 | |
| /*     BUF is less than one here. */
 | |
| 
 | |
|     *scale *= buf;
 | |
| 
 | |
| /*     Restore workspace dimensions */
 | |
| 
 | |
|     swork[swork_dim1 + 1] = (doublereal) f2cmax(nba,nbb);
 | |
|     swork[swork_dim1 + 2] = (doublereal) ((nbb << 1) + nba);
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of ZTRSYL3 */
 | |
| 
 | |
| } /* ztrsyl3_ */
 | |
| 
 |