956 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			956 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle_() continue;
 | |
| #define myceiling_(w) {ceil(w)}
 | |
| #define myhuge_(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__2 = 2;
 | |
| static integer c__1 = 1;
 | |
| 
 | |
| /* > \brief \b ZTGEX2 swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an unitary 
 | |
| equivalence transformation. */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download ZTGEX2 + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztgex2.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztgex2.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztgex2.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE ZTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z, */
 | |
| /*                          LDZ, J1, INFO ) */
 | |
| 
 | |
| /*       LOGICAL            WANTQ, WANTZ */
 | |
| /*       INTEGER            INFO, J1, LDA, LDB, LDQ, LDZ, N */
 | |
| /*       COMPLEX*16         A( LDA, * ), B( LDB, * ), Q( LDQ, * ), */
 | |
| /*      $                   Z( LDZ, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > ZTGEX2 swaps adjacent diagonal 1 by 1 blocks (A11,B11) and (A22,B22) */
 | |
| /* > in an upper triangular matrix pair (A, B) by an unitary equivalence */
 | |
| /* > transformation. */
 | |
| /* > */
 | |
| /* > (A, B) must be in generalized Schur canonical form, that is, A and */
 | |
| /* > B are both upper triangular. */
 | |
| /* > */
 | |
| /* > Optionally, the matrices Q and Z of generalized Schur vectors are */
 | |
| /* > updated. */
 | |
| /* > */
 | |
| /* >        Q(in) * A(in) * Z(in)**H = Q(out) * A(out) * Z(out)**H */
 | |
| /* >        Q(in) * B(in) * Z(in)**H = Q(out) * B(out) * Z(out)**H */
 | |
| /* > */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] WANTQ */
 | |
| /* > \verbatim */
 | |
| /* >          WANTQ is LOGICAL */
 | |
| /* >          .TRUE. : update the left transformation matrix Q; */
 | |
| /* >          .FALSE.: do not update Q. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] WANTZ */
 | |
| /* > \verbatim */
 | |
| /* >          WANTZ is LOGICAL */
 | |
| /* >          .TRUE. : update the right transformation matrix Z; */
 | |
| /* >          .FALSE.: do not update Z. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrices A and B. N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is COMPLEX*16 array, dimensions (LDA,N) */
 | |
| /* >          On entry, the matrix A in the pair (A, B). */
 | |
| /* >          On exit, the updated matrix A. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A. LDA >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] B */
 | |
| /* > \verbatim */
 | |
| /* >          B is COMPLEX*16 array, dimensions (LDB,N) */
 | |
| /* >          On entry, the matrix B in the pair (A, B). */
 | |
| /* >          On exit, the updated matrix B. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDB */
 | |
| /* > \verbatim */
 | |
| /* >          LDB is INTEGER */
 | |
| /* >          The leading dimension of the array B. LDB >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] Q */
 | |
| /* > \verbatim */
 | |
| /* >          Q is COMPLEX*16 array, dimension (LDQ,N) */
 | |
| /* >          If WANTQ = .TRUE, on entry, the unitary matrix Q. On exit, */
 | |
| /* >          the updated matrix Q. */
 | |
| /* >          Not referenced if WANTQ = .FALSE.. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDQ */
 | |
| /* > \verbatim */
 | |
| /* >          LDQ is INTEGER */
 | |
| /* >          The leading dimension of the array Q. LDQ >= 1; */
 | |
| /* >          If WANTQ = .TRUE., LDQ >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] Z */
 | |
| /* > \verbatim */
 | |
| /* >          Z is COMPLEX*16 array, dimension (LDZ,N) */
 | |
| /* >          If WANTZ = .TRUE, on entry, the unitary matrix Z. On exit, */
 | |
| /* >          the updated matrix Z. */
 | |
| /* >          Not referenced if WANTZ = .FALSE.. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDZ */
 | |
| /* > \verbatim */
 | |
| /* >          LDZ is INTEGER */
 | |
| /* >          The leading dimension of the array Z. LDZ >= 1; */
 | |
| /* >          If WANTZ = .TRUE., LDZ >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] J1 */
 | |
| /* > \verbatim */
 | |
| /* >          J1 is INTEGER */
 | |
| /* >          The index to the first block (A11, B11). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >           =0:  Successful exit. */
 | |
| /* >           =1:  The transformed matrix pair (A, B) would be too far */
 | |
| /* >                from generalized Schur form; the problem is ill- */
 | |
| /* >                conditioned. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date June 2017 */
 | |
| 
 | |
| /* > \ingroup complex16GEauxiliary */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* >  In the current code both weak and strong stability tests are */
 | |
| /* >  performed. The user can omit the strong stability test by changing */
 | |
| /* >  the internal logical parameter WANDS to .FALSE.. See ref. [2] for */
 | |
| /* >  details. */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* >     Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
 | |
| /* >     Umea University, S-901 87 Umea, Sweden. */
 | |
| 
 | |
| /* > \par References: */
 | |
| /*  ================ */
 | |
| /* > */
 | |
| /* >  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
 | |
| /* >      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
 | |
| /* >      M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
 | |
| /* >      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
 | |
| /* > \n */
 | |
| /* >  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
 | |
| /* >      Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
 | |
| /* >      Estimation: Theory, Algorithms and Software, Report UMINF-94.04, */
 | |
| /* >      Department of Computing Science, Umea University, S-901 87 Umea, */
 | |
| /* >      Sweden, 1994. Also as LAPACK Working Note 87. To appear in */
 | |
| /* >      Numerical Algorithms, 1996. */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void ztgex2_(logical *wantq, logical *wantz, integer *n, 
 | |
| 	doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb, 
 | |
| 	doublecomplex *q, integer *ldq, doublecomplex *z__, integer *ldz, 
 | |
| 	integer *j1, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1, 
 | |
| 	    z_offset, i__1, i__2, i__3;
 | |
|     doublereal d__1;
 | |
|     doublecomplex z__1, z__2, z__3;
 | |
| 
 | |
|     /* Local variables */
 | |
|     logical weak;
 | |
|     doublecomplex cdum, work[8];
 | |
|     extern /* Subroutine */ void zrot_(integer *, doublecomplex *, integer *, 
 | |
| 	    doublecomplex *, integer *, doublereal *, doublecomplex *);
 | |
|     doublecomplex f, g;
 | |
|     integer i__, m;
 | |
|     doublecomplex s[4]	/* was [2][2] */, t[4]	/* was [2][2] */;
 | |
|     doublereal scale, cq, sa, sb;
 | |
|     extern doublereal dlamch_(char *);
 | |
|     doublereal cz;
 | |
|     doublecomplex sq;
 | |
|     doublereal ss, ws;
 | |
|     doublecomplex sz;
 | |
|     logical dtrong;
 | |
|     doublereal thresh;
 | |
|     extern /* Subroutine */ void zlacpy_(char *, integer *, integer *, 
 | |
| 	    doublecomplex *, integer *, doublecomplex *, integer *), 
 | |
| 	    zlartg_(doublecomplex *, doublecomplex *, doublereal *, 
 | |
| 	    doublecomplex *, doublecomplex *);
 | |
|     doublereal smlnum;
 | |
|     extern /* Subroutine */ void zlassq_(integer *, doublecomplex *, integer *,
 | |
| 	     doublereal *, doublereal *);
 | |
|     doublereal eps, sum;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.7.1) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2017 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     b_dim1 = *ldb;
 | |
|     b_offset = 1 + b_dim1 * 1;
 | |
|     b -= b_offset;
 | |
|     q_dim1 = *ldq;
 | |
|     q_offset = 1 + q_dim1 * 1;
 | |
|     q -= q_offset;
 | |
|     z_dim1 = *ldz;
 | |
|     z_offset = 1 + z_dim1 * 1;
 | |
|     z__ -= z_offset;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*n <= 1) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     m = 2;
 | |
|     weak = FALSE_;
 | |
|     dtrong = FALSE_;
 | |
| 
 | |
| /*     Make a local copy of selected block in (A, B) */
 | |
| 
 | |
|     zlacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, s, &c__2);
 | |
|     zlacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, t, &c__2);
 | |
| 
 | |
| /*     Compute the threshold for testing the acceptance of swapping. */
 | |
| 
 | |
|     eps = dlamch_("P");
 | |
|     smlnum = dlamch_("S") / eps;
 | |
|     scale = 0.;
 | |
|     sum = 1.;
 | |
|     zlacpy_("Full", &m, &m, s, &c__2, work, &m);
 | |
|     zlacpy_("Full", &m, &m, t, &c__2, &work[m * m], &m);
 | |
|     i__1 = (m << 1) * m;
 | |
|     zlassq_(&i__1, work, &c__1, &scale, &sum);
 | |
|     sa = scale * sqrt(sum);
 | |
| 
 | |
| /*     THRES has been changed from */
 | |
| /*        THRESH = MAX( TEN*EPS*SA, SMLNUM ) */
 | |
| /*     to */
 | |
| /*        THRESH = MAX( TWENTY*EPS*SA, SMLNUM ) */
 | |
| /*     on 04/01/10. */
 | |
| /*     "Bug" reported by Ondra Kamenik, confirmed by Julie Langou, fixed by */
 | |
| /*     Jim Demmel and Guillaume Revy. See forum post 1783. */
 | |
| 
 | |
| /* Computing MAX */
 | |
|     d__1 = eps * 20. * sa;
 | |
|     thresh = f2cmax(d__1,smlnum);
 | |
| 
 | |
| /*     Compute unitary QL and RQ that swap 1-by-1 and 1-by-1 blocks */
 | |
| /*     using Givens rotations and perform the swap tentatively. */
 | |
| 
 | |
|     z__2.r = s[3].r * t[0].r - s[3].i * t[0].i, z__2.i = s[3].r * t[0].i + s[
 | |
| 	    3].i * t[0].r;
 | |
|     z__3.r = t[3].r * s[0].r - t[3].i * s[0].i, z__3.i = t[3].r * s[0].i + t[
 | |
| 	    3].i * s[0].r;
 | |
|     z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
 | |
|     f.r = z__1.r, f.i = z__1.i;
 | |
|     z__2.r = s[3].r * t[2].r - s[3].i * t[2].i, z__2.i = s[3].r * t[2].i + s[
 | |
| 	    3].i * t[2].r;
 | |
|     z__3.r = t[3].r * s[2].r - t[3].i * s[2].i, z__3.i = t[3].r * s[2].i + t[
 | |
| 	    3].i * s[2].r;
 | |
|     z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
 | |
|     g.r = z__1.r, g.i = z__1.i;
 | |
|     sa = z_abs(&s[3]);
 | |
|     sb = z_abs(&t[3]);
 | |
|     zlartg_(&g, &f, &cz, &sz, &cdum);
 | |
|     z__1.r = -sz.r, z__1.i = -sz.i;
 | |
|     sz.r = z__1.r, sz.i = z__1.i;
 | |
|     d_cnjg(&z__1, &sz);
 | |
|     zrot_(&c__2, s, &c__1, &s[2], &c__1, &cz, &z__1);
 | |
|     d_cnjg(&z__1, &sz);
 | |
|     zrot_(&c__2, t, &c__1, &t[2], &c__1, &cz, &z__1);
 | |
|     if (sa >= sb) {
 | |
| 	zlartg_(s, &s[1], &cq, &sq, &cdum);
 | |
|     } else {
 | |
| 	zlartg_(t, &t[1], &cq, &sq, &cdum);
 | |
|     }
 | |
|     zrot_(&c__2, s, &c__2, &s[1], &c__2, &cq, &sq);
 | |
|     zrot_(&c__2, t, &c__2, &t[1], &c__2, &cq, &sq);
 | |
| 
 | |
| /*     Weak stability test: |S21| + |T21| <= O(EPS F-norm((S, T))) */
 | |
| 
 | |
|     ws = z_abs(&s[1]) + z_abs(&t[1]);
 | |
|     weak = ws <= thresh;
 | |
|     if (! weak) {
 | |
| 	goto L20;
 | |
|     }
 | |
| 
 | |
|     if (TRUE_) {
 | |
| 
 | |
| /*        Strong stability test: */
 | |
| /*           F-norm((A-QL**H*S*QR, B-QL**H*T*QR)) <= O(EPS*F-norm((A, B))) */
 | |
| 
 | |
| 	zlacpy_("Full", &m, &m, s, &c__2, work, &m);
 | |
| 	zlacpy_("Full", &m, &m, t, &c__2, &work[m * m], &m);
 | |
| 	d_cnjg(&z__2, &sz);
 | |
| 	z__1.r = -z__2.r, z__1.i = -z__2.i;
 | |
| 	zrot_(&c__2, work, &c__1, &work[2], &c__1, &cz, &z__1);
 | |
| 	d_cnjg(&z__2, &sz);
 | |
| 	z__1.r = -z__2.r, z__1.i = -z__2.i;
 | |
| 	zrot_(&c__2, &work[4], &c__1, &work[6], &c__1, &cz, &z__1);
 | |
| 	z__1.r = -sq.r, z__1.i = -sq.i;
 | |
| 	zrot_(&c__2, work, &c__2, &work[1], &c__2, &cq, &z__1);
 | |
| 	z__1.r = -sq.r, z__1.i = -sq.i;
 | |
| 	zrot_(&c__2, &work[4], &c__2, &work[5], &c__2, &cq, &z__1);
 | |
| 	for (i__ = 1; i__ <= 2; ++i__) {
 | |
| 	    i__1 = i__ - 1;
 | |
| 	    i__2 = i__ - 1;
 | |
| 	    i__3 = *j1 + i__ - 1 + *j1 * a_dim1;
 | |
| 	    z__1.r = work[i__2].r - a[i__3].r, z__1.i = work[i__2].i - a[i__3]
 | |
| 		    .i;
 | |
| 	    work[i__1].r = z__1.r, work[i__1].i = z__1.i;
 | |
| 	    i__1 = i__ + 1;
 | |
| 	    i__2 = i__ + 1;
 | |
| 	    i__3 = *j1 + i__ - 1 + (*j1 + 1) * a_dim1;
 | |
| 	    z__1.r = work[i__2].r - a[i__3].r, z__1.i = work[i__2].i - a[i__3]
 | |
| 		    .i;
 | |
| 	    work[i__1].r = z__1.r, work[i__1].i = z__1.i;
 | |
| 	    i__1 = i__ + 3;
 | |
| 	    i__2 = i__ + 3;
 | |
| 	    i__3 = *j1 + i__ - 1 + *j1 * b_dim1;
 | |
| 	    z__1.r = work[i__2].r - b[i__3].r, z__1.i = work[i__2].i - b[i__3]
 | |
| 		    .i;
 | |
| 	    work[i__1].r = z__1.r, work[i__1].i = z__1.i;
 | |
| 	    i__1 = i__ + 5;
 | |
| 	    i__2 = i__ + 5;
 | |
| 	    i__3 = *j1 + i__ - 1 + (*j1 + 1) * b_dim1;
 | |
| 	    z__1.r = work[i__2].r - b[i__3].r, z__1.i = work[i__2].i - b[i__3]
 | |
| 		    .i;
 | |
| 	    work[i__1].r = z__1.r, work[i__1].i = z__1.i;
 | |
| /* L10: */
 | |
| 	}
 | |
| 	scale = 0.;
 | |
| 	sum = 1.;
 | |
| 	i__1 = (m << 1) * m;
 | |
| 	zlassq_(&i__1, work, &c__1, &scale, &sum);
 | |
| 	ss = scale * sqrt(sum);
 | |
| 	dtrong = ss <= thresh;
 | |
| 	if (! dtrong) {
 | |
| 	    goto L20;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     If the swap is accepted ("weakly" and "strongly"), apply the */
 | |
| /*     equivalence transformations to the original matrix pair (A,B) */
 | |
| 
 | |
|     i__1 = *j1 + 1;
 | |
|     d_cnjg(&z__1, &sz);
 | |
|     zrot_(&i__1, &a[*j1 * a_dim1 + 1], &c__1, &a[(*j1 + 1) * a_dim1 + 1], &
 | |
| 	    c__1, &cz, &z__1);
 | |
|     i__1 = *j1 + 1;
 | |
|     d_cnjg(&z__1, &sz);
 | |
|     zrot_(&i__1, &b[*j1 * b_dim1 + 1], &c__1, &b[(*j1 + 1) * b_dim1 + 1], &
 | |
| 	    c__1, &cz, &z__1);
 | |
|     i__1 = *n - *j1 + 1;
 | |
|     zrot_(&i__1, &a[*j1 + *j1 * a_dim1], lda, &a[*j1 + 1 + *j1 * a_dim1], lda,
 | |
| 	     &cq, &sq);
 | |
|     i__1 = *n - *j1 + 1;
 | |
|     zrot_(&i__1, &b[*j1 + *j1 * b_dim1], ldb, &b[*j1 + 1 + *j1 * b_dim1], ldb,
 | |
| 	     &cq, &sq);
 | |
| 
 | |
| /*     Set  N1 by N2 (2,1) blocks to 0 */
 | |
| 
 | |
|     i__1 = *j1 + 1 + *j1 * a_dim1;
 | |
|     a[i__1].r = 0., a[i__1].i = 0.;
 | |
|     i__1 = *j1 + 1 + *j1 * b_dim1;
 | |
|     b[i__1].r = 0., b[i__1].i = 0.;
 | |
| 
 | |
| /*     Accumulate transformations into Q and Z if requested. */
 | |
| 
 | |
|     if (*wantz) {
 | |
| 	d_cnjg(&z__1, &sz);
 | |
| 	zrot_(n, &z__[*j1 * z_dim1 + 1], &c__1, &z__[(*j1 + 1) * z_dim1 + 1], 
 | |
| 		&c__1, &cz, &z__1);
 | |
|     }
 | |
|     if (*wantq) {
 | |
| 	d_cnjg(&z__1, &sq);
 | |
| 	zrot_(n, &q[*j1 * q_dim1 + 1], &c__1, &q[(*j1 + 1) * q_dim1 + 1], &
 | |
| 		c__1, &cq, &z__1);
 | |
|     }
 | |
| 
 | |
| /*     Exit with INFO = 0 if swap was successfully performed. */
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     Exit with INFO = 1 if swap was rejected. */
 | |
| 
 | |
| L20:
 | |
|     *info = 1;
 | |
|     return;
 | |
| 
 | |
| /*     End of ZTGEX2 */
 | |
| 
 | |
| } /* ztgex2_ */
 | |
| 
 |