1555 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1555 lines
		
	
	
		
			43 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle_() continue;
 | |
| #define myceiling_(w) {ceil(w)}
 | |
| #define myhuge_(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static doublecomplex c_b1 = {0.,0.};
 | |
| static doublecomplex c_b2 = {1.,0.};
 | |
| static integer c__1 = 1;
 | |
| 
 | |
| /* > \brief \b ZTGEVC */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download ZTGEVC + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztgevc.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztgevc.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztgevc.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE ZTGEVC( SIDE, HOWMNY, SELECT, N, S, LDS, P, LDP, VL, */
 | |
| /*                          LDVL, VR, LDVR, MM, M, WORK, RWORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          HOWMNY, SIDE */
 | |
| /*       INTEGER            INFO, LDP, LDS, LDVL, LDVR, M, MM, N */
 | |
| /*       LOGICAL            SELECT( * ) */
 | |
| /*       DOUBLE PRECISION   RWORK( * ) */
 | |
| /*       COMPLEX*16         P( LDP, * ), S( LDS, * ), VL( LDVL, * ), */
 | |
| /*      $                   VR( LDVR, * ), WORK( * ) */
 | |
| 
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > ZTGEVC computes some or all of the right and/or left eigenvectors of */
 | |
| /* > a pair of complex matrices (S,P), where S and P are upper triangular. */
 | |
| /* > Matrix pairs of this type are produced by the generalized Schur */
 | |
| /* > factorization of a complex matrix pair (A,B): */
 | |
| /* > */
 | |
| /* >    A = Q*S*Z**H,  B = Q*P*Z**H */
 | |
| /* > */
 | |
| /* > as computed by ZGGHRD + ZHGEQZ. */
 | |
| /* > */
 | |
| /* > The right eigenvector x and the left eigenvector y of (S,P) */
 | |
| /* > corresponding to an eigenvalue w are defined by: */
 | |
| /* > */
 | |
| /* >    S*x = w*P*x,  (y**H)*S = w*(y**H)*P, */
 | |
| /* > */
 | |
| /* > where y**H denotes the conjugate tranpose of y. */
 | |
| /* > The eigenvalues are not input to this routine, but are computed */
 | |
| /* > directly from the diagonal elements of S and P. */
 | |
| /* > */
 | |
| /* > This routine returns the matrices X and/or Y of right and left */
 | |
| /* > eigenvectors of (S,P), or the products Z*X and/or Q*Y, */
 | |
| /* > where Z and Q are input matrices. */
 | |
| /* > If Q and Z are the unitary factors from the generalized Schur */
 | |
| /* > factorization of a matrix pair (A,B), then Z*X and Q*Y */
 | |
| /* > are the matrices of right and left eigenvectors of (A,B). */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] SIDE */
 | |
| /* > \verbatim */
 | |
| /* >          SIDE is CHARACTER*1 */
 | |
| /* >          = 'R': compute right eigenvectors only; */
 | |
| /* >          = 'L': compute left eigenvectors only; */
 | |
| /* >          = 'B': compute both right and left eigenvectors. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] HOWMNY */
 | |
| /* > \verbatim */
 | |
| /* >          HOWMNY is CHARACTER*1 */
 | |
| /* >          = 'A': compute all right and/or left eigenvectors; */
 | |
| /* >          = 'B': compute all right and/or left eigenvectors, */
 | |
| /* >                 backtransformed by the matrices in VR and/or VL; */
 | |
| /* >          = 'S': compute selected right and/or left eigenvectors, */
 | |
| /* >                 specified by the logical array SELECT. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] SELECT */
 | |
| /* > \verbatim */
 | |
| /* >          SELECT is LOGICAL array, dimension (N) */
 | |
| /* >          If HOWMNY='S', SELECT specifies the eigenvectors to be */
 | |
| /* >          computed.  The eigenvector corresponding to the j-th */
 | |
| /* >          eigenvalue is computed if SELECT(j) = .TRUE.. */
 | |
| /* >          Not referenced if HOWMNY = 'A' or 'B'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrices S and P.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] S */
 | |
| /* > \verbatim */
 | |
| /* >          S is COMPLEX*16 array, dimension (LDS,N) */
 | |
| /* >          The upper triangular matrix S from a generalized Schur */
 | |
| /* >          factorization, as computed by ZHGEQZ. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDS */
 | |
| /* > \verbatim */
 | |
| /* >          LDS is INTEGER */
 | |
| /* >          The leading dimension of array S.  LDS >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] P */
 | |
| /* > \verbatim */
 | |
| /* >          P is COMPLEX*16 array, dimension (LDP,N) */
 | |
| /* >          The upper triangular matrix P from a generalized Schur */
 | |
| /* >          factorization, as computed by ZHGEQZ.  P must have real */
 | |
| /* >          diagonal elements. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDP */
 | |
| /* > \verbatim */
 | |
| /* >          LDP is INTEGER */
 | |
| /* >          The leading dimension of array P.  LDP >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] VL */
 | |
| /* > \verbatim */
 | |
| /* >          VL is COMPLEX*16 array, dimension (LDVL,MM) */
 | |
| /* >          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must */
 | |
| /* >          contain an N-by-N matrix Q (usually the unitary matrix Q */
 | |
| /* >          of left Schur vectors returned by ZHGEQZ). */
 | |
| /* >          On exit, if SIDE = 'L' or 'B', VL contains: */
 | |
| /* >          if HOWMNY = 'A', the matrix Y of left eigenvectors of (S,P); */
 | |
| /* >          if HOWMNY = 'B', the matrix Q*Y; */
 | |
| /* >          if HOWMNY = 'S', the left eigenvectors of (S,P) specified by */
 | |
| /* >                      SELECT, stored consecutively in the columns of */
 | |
| /* >                      VL, in the same order as their eigenvalues. */
 | |
| /* >          Not referenced if SIDE = 'R'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDVL */
 | |
| /* > \verbatim */
 | |
| /* >          LDVL is INTEGER */
 | |
| /* >          The leading dimension of array VL.  LDVL >= 1, and if */
 | |
| /* >          SIDE = 'L' or 'l' or 'B' or 'b', LDVL >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] VR */
 | |
| /* > \verbatim */
 | |
| /* >          VR is COMPLEX*16 array, dimension (LDVR,MM) */
 | |
| /* >          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must */
 | |
| /* >          contain an N-by-N matrix Q (usually the unitary matrix Z */
 | |
| /* >          of right Schur vectors returned by ZHGEQZ). */
 | |
| /* >          On exit, if SIDE = 'R' or 'B', VR contains: */
 | |
| /* >          if HOWMNY = 'A', the matrix X of right eigenvectors of (S,P); */
 | |
| /* >          if HOWMNY = 'B', the matrix Z*X; */
 | |
| /* >          if HOWMNY = 'S', the right eigenvectors of (S,P) specified by */
 | |
| /* >                      SELECT, stored consecutively in the columns of */
 | |
| /* >                      VR, in the same order as their eigenvalues. */
 | |
| /* >          Not referenced if SIDE = 'L'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDVR */
 | |
| /* > \verbatim */
 | |
| /* >          LDVR is INTEGER */
 | |
| /* >          The leading dimension of the array VR.  LDVR >= 1, and if */
 | |
| /* >          SIDE = 'R' or 'B', LDVR >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] MM */
 | |
| /* > \verbatim */
 | |
| /* >          MM is INTEGER */
 | |
| /* >          The number of columns in the arrays VL and/or VR. MM >= M. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The number of columns in the arrays VL and/or VR actually */
 | |
| /* >          used to store the eigenvectors.  If HOWMNY = 'A' or 'B', M */
 | |
| /* >          is set to N.  Each selected eigenvector occupies one column. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is COMPLEX*16 array, dimension (2*N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RWORK */
 | |
| /* > \verbatim */
 | |
| /* >          RWORK is DOUBLE PRECISION array, dimension (2*N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit. */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup complex16GEcomputational */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void ztgevc_(char *side, char *howmny, logical *select, 
 | |
| 	integer *n, doublecomplex *s, integer *lds, doublecomplex *p, integer 
 | |
| 	*ldp, doublecomplex *vl, integer *ldvl, doublecomplex *vr, integer *
 | |
| 	ldvr, integer *mm, integer *m, doublecomplex *work, doublereal *rwork,
 | |
| 	 integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer p_dim1, p_offset, s_dim1, s_offset, vl_dim1, vl_offset, vr_dim1, 
 | |
| 	    vr_offset, i__1, i__2, i__3, i__4, i__5;
 | |
|     doublereal d__1, d__2, d__3, d__4, d__5, d__6;
 | |
|     doublecomplex z__1, z__2, z__3, z__4;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer ibeg, ieig, iend;
 | |
|     doublereal dmin__;
 | |
|     integer isrc;
 | |
|     doublereal temp;
 | |
|     doublecomplex suma, sumb;
 | |
|     doublereal xmax;
 | |
|     doublecomplex d__;
 | |
|     integer i__, j;
 | |
|     doublereal scale;
 | |
|     logical ilall;
 | |
|     integer iside;
 | |
|     doublereal sbeta;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     doublereal small;
 | |
|     logical compl;
 | |
|     doublereal anorm, bnorm;
 | |
|     logical compr;
 | |
|     extern /* Subroutine */ void zgemv_(char *, integer *, integer *, 
 | |
| 	    doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
 | |
| 	    integer *, doublecomplex *, doublecomplex *, integer *);
 | |
|     doublecomplex ca, cb;
 | |
|     extern /* Subroutine */ void dlabad_(doublereal *, doublereal *);
 | |
|     logical ilbbad;
 | |
|     doublereal acoefa;
 | |
|     integer je;
 | |
|     doublereal bcoefa, acoeff;
 | |
|     doublecomplex bcoeff;
 | |
|     logical ilback;
 | |
|     integer im;
 | |
|     doublereal ascale, bscale;
 | |
|     extern doublereal dlamch_(char *);
 | |
|     integer jr;
 | |
|     doublecomplex salpha;
 | |
|     doublereal safmin;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     doublereal bignum;
 | |
|     logical ilcomp;
 | |
|     extern /* Double Complex */ VOID zladiv_(doublecomplex *, doublecomplex *,
 | |
| 	     doublecomplex *);
 | |
|     integer ihwmny;
 | |
|     doublereal big;
 | |
|     logical lsa, lsb;
 | |
|     doublereal ulp;
 | |
|     doublecomplex sum;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Decode and Test the input parameters */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --select;
 | |
|     s_dim1 = *lds;
 | |
|     s_offset = 1 + s_dim1 * 1;
 | |
|     s -= s_offset;
 | |
|     p_dim1 = *ldp;
 | |
|     p_offset = 1 + p_dim1 * 1;
 | |
|     p -= p_offset;
 | |
|     vl_dim1 = *ldvl;
 | |
|     vl_offset = 1 + vl_dim1 * 1;
 | |
|     vl -= vl_offset;
 | |
|     vr_dim1 = *ldvr;
 | |
|     vr_offset = 1 + vr_dim1 * 1;
 | |
|     vr -= vr_offset;
 | |
|     --work;
 | |
|     --rwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     if (lsame_(howmny, "A")) {
 | |
| 	ihwmny = 1;
 | |
| 	ilall = TRUE_;
 | |
| 	ilback = FALSE_;
 | |
|     } else if (lsame_(howmny, "S")) {
 | |
| 	ihwmny = 2;
 | |
| 	ilall = FALSE_;
 | |
| 	ilback = FALSE_;
 | |
|     } else if (lsame_(howmny, "B")) {
 | |
| 	ihwmny = 3;
 | |
| 	ilall = TRUE_;
 | |
| 	ilback = TRUE_;
 | |
|     } else {
 | |
| 	ihwmny = -1;
 | |
|     }
 | |
| 
 | |
|     if (lsame_(side, "R")) {
 | |
| 	iside = 1;
 | |
| 	compl = FALSE_;
 | |
| 	compr = TRUE_;
 | |
|     } else if (lsame_(side, "L")) {
 | |
| 	iside = 2;
 | |
| 	compl = TRUE_;
 | |
| 	compr = FALSE_;
 | |
|     } else if (lsame_(side, "B")) {
 | |
| 	iside = 3;
 | |
| 	compl = TRUE_;
 | |
| 	compr = TRUE_;
 | |
|     } else {
 | |
| 	iside = -1;
 | |
|     }
 | |
| 
 | |
|     *info = 0;
 | |
|     if (iside < 0) {
 | |
| 	*info = -1;
 | |
|     } else if (ihwmny < 0) {
 | |
| 	*info = -2;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -4;
 | |
|     } else if (*lds < f2cmax(1,*n)) {
 | |
| 	*info = -6;
 | |
|     } else if (*ldp < f2cmax(1,*n)) {
 | |
| 	*info = -8;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("ZTGEVC", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Count the number of eigenvectors */
 | |
| 
 | |
|     if (! ilall) {
 | |
| 	im = 0;
 | |
| 	i__1 = *n;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    if (select[j]) {
 | |
| 		++im;
 | |
| 	    }
 | |
| /* L10: */
 | |
| 	}
 | |
|     } else {
 | |
| 	im = *n;
 | |
|     }
 | |
| 
 | |
| /*     Check diagonal of B */
 | |
| 
 | |
|     ilbbad = FALSE_;
 | |
|     i__1 = *n;
 | |
|     for (j = 1; j <= i__1; ++j) {
 | |
| 	if (d_imag(&p[j + j * p_dim1]) != 0.) {
 | |
| 	    ilbbad = TRUE_;
 | |
| 	}
 | |
| /* L20: */
 | |
|     }
 | |
| 
 | |
|     if (ilbbad) {
 | |
| 	*info = -7;
 | |
|     } else if (compl && *ldvl < *n || *ldvl < 1) {
 | |
| 	*info = -10;
 | |
|     } else if (compr && *ldvr < *n || *ldvr < 1) {
 | |
| 	*info = -12;
 | |
|     } else if (*mm < im) {
 | |
| 	*info = -13;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("ZTGEVC", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     *m = im;
 | |
|     if (*n == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Machine Constants */
 | |
| 
 | |
|     safmin = dlamch_("Safe minimum");
 | |
|     big = 1. / safmin;
 | |
|     dlabad_(&safmin, &big);
 | |
|     ulp = dlamch_("Epsilon") * dlamch_("Base");
 | |
|     small = safmin * *n / ulp;
 | |
|     big = 1. / small;
 | |
|     bignum = 1. / (safmin * *n);
 | |
| 
 | |
| /*     Compute the 1-norm of each column of the strictly upper triangular */
 | |
| /*     part of A and B to check for possible overflow in the triangular */
 | |
| /*     solver. */
 | |
| 
 | |
|     i__1 = s_dim1 + 1;
 | |
|     anorm = (d__1 = s[i__1].r, abs(d__1)) + (d__2 = d_imag(&s[s_dim1 + 1]), 
 | |
| 	    abs(d__2));
 | |
|     i__1 = p_dim1 + 1;
 | |
|     bnorm = (d__1 = p[i__1].r, abs(d__1)) + (d__2 = d_imag(&p[p_dim1 + 1]), 
 | |
| 	    abs(d__2));
 | |
|     rwork[1] = 0.;
 | |
|     rwork[*n + 1] = 0.;
 | |
|     i__1 = *n;
 | |
|     for (j = 2; j <= i__1; ++j) {
 | |
| 	rwork[j] = 0.;
 | |
| 	rwork[*n + j] = 0.;
 | |
| 	i__2 = j - 1;
 | |
| 	for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 	    i__3 = i__ + j * s_dim1;
 | |
| 	    rwork[j] += (d__1 = s[i__3].r, abs(d__1)) + (d__2 = d_imag(&s[i__ 
 | |
| 		    + j * s_dim1]), abs(d__2));
 | |
| 	    i__3 = i__ + j * p_dim1;
 | |
| 	    rwork[*n + j] += (d__1 = p[i__3].r, abs(d__1)) + (d__2 = d_imag(&
 | |
| 		    p[i__ + j * p_dim1]), abs(d__2));
 | |
| /* L30: */
 | |
| 	}
 | |
| /* Computing MAX */
 | |
| 	i__2 = j + j * s_dim1;
 | |
| 	d__3 = anorm, d__4 = rwork[j] + ((d__1 = s[i__2].r, abs(d__1)) + (
 | |
| 		d__2 = d_imag(&s[j + j * s_dim1]), abs(d__2)));
 | |
| 	anorm = f2cmax(d__3,d__4);
 | |
| /* Computing MAX */
 | |
| 	i__2 = j + j * p_dim1;
 | |
| 	d__3 = bnorm, d__4 = rwork[*n + j] + ((d__1 = p[i__2].r, abs(d__1)) + 
 | |
| 		(d__2 = d_imag(&p[j + j * p_dim1]), abs(d__2)));
 | |
| 	bnorm = f2cmax(d__3,d__4);
 | |
| /* L40: */
 | |
|     }
 | |
| 
 | |
|     ascale = 1. / f2cmax(anorm,safmin);
 | |
|     bscale = 1. / f2cmax(bnorm,safmin);
 | |
| 
 | |
| /*     Left eigenvectors */
 | |
| 
 | |
|     if (compl) {
 | |
| 	ieig = 0;
 | |
| 
 | |
| /*        Main loop over eigenvalues */
 | |
| 
 | |
| 	i__1 = *n;
 | |
| 	for (je = 1; je <= i__1; ++je) {
 | |
| 	    if (ilall) {
 | |
| 		ilcomp = TRUE_;
 | |
| 	    } else {
 | |
| 		ilcomp = select[je];
 | |
| 	    }
 | |
| 	    if (ilcomp) {
 | |
| 		++ieig;
 | |
| 
 | |
| 		i__2 = je + je * s_dim1;
 | |
| 		i__3 = je + je * p_dim1;
 | |
| 		if ((d__2 = s[i__2].r, abs(d__2)) + (d__3 = d_imag(&s[je + je 
 | |
| 			* s_dim1]), abs(d__3)) <= safmin && (d__1 = p[i__3].r,
 | |
| 			 abs(d__1)) <= safmin) {
 | |
| 
 | |
| /*                 Singular matrix pencil -- return unit eigenvector */
 | |
| 
 | |
| 		    i__2 = *n;
 | |
| 		    for (jr = 1; jr <= i__2; ++jr) {
 | |
| 			i__3 = jr + ieig * vl_dim1;
 | |
| 			vl[i__3].r = 0., vl[i__3].i = 0.;
 | |
| /* L50: */
 | |
| 		    }
 | |
| 		    i__2 = ieig + ieig * vl_dim1;
 | |
| 		    vl[i__2].r = 1., vl[i__2].i = 0.;
 | |
| 		    goto L140;
 | |
| 		}
 | |
| 
 | |
| /*              Non-singular eigenvalue: */
 | |
| /*              Compute coefficients  a  and  b  in */
 | |
| /*                   H */
 | |
| /*                 y  ( a A - b B ) = 0 */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 		i__2 = je + je * s_dim1;
 | |
| 		i__3 = je + je * p_dim1;
 | |
| 		d__4 = ((d__2 = s[i__2].r, abs(d__2)) + (d__3 = d_imag(&s[je 
 | |
| 			+ je * s_dim1]), abs(d__3))) * ascale, d__5 = (d__1 = 
 | |
| 			p[i__3].r, abs(d__1)) * bscale, d__4 = f2cmax(d__4,d__5);
 | |
| 		temp = 1. / f2cmax(d__4,safmin);
 | |
| 		i__2 = je + je * s_dim1;
 | |
| 		z__2.r = temp * s[i__2].r, z__2.i = temp * s[i__2].i;
 | |
| 		z__1.r = ascale * z__2.r, z__1.i = ascale * z__2.i;
 | |
| 		salpha.r = z__1.r, salpha.i = z__1.i;
 | |
| 		i__2 = je + je * p_dim1;
 | |
| 		sbeta = temp * p[i__2].r * bscale;
 | |
| 		acoeff = sbeta * ascale;
 | |
| 		z__1.r = bscale * salpha.r, z__1.i = bscale * salpha.i;
 | |
| 		bcoeff.r = z__1.r, bcoeff.i = z__1.i;
 | |
| 
 | |
| /*              Scale to avoid underflow */
 | |
| 
 | |
| 		lsa = abs(sbeta) >= safmin && abs(acoeff) < small;
 | |
| 		lsb = (d__1 = salpha.r, abs(d__1)) + (d__2 = d_imag(&salpha), 
 | |
| 			abs(d__2)) >= safmin && (d__3 = bcoeff.r, abs(d__3)) 
 | |
| 			+ (d__4 = d_imag(&bcoeff), abs(d__4)) < small;
 | |
| 
 | |
| 		scale = 1.;
 | |
| 		if (lsa) {
 | |
| 		    scale = small / abs(sbeta) * f2cmin(anorm,big);
 | |
| 		}
 | |
| 		if (lsb) {
 | |
| /* Computing MAX */
 | |
| 		    d__3 = scale, d__4 = small / ((d__1 = salpha.r, abs(d__1))
 | |
| 			     + (d__2 = d_imag(&salpha), abs(d__2))) * f2cmin(
 | |
| 			    bnorm,big);
 | |
| 		    scale = f2cmax(d__3,d__4);
 | |
| 		}
 | |
| 		if (lsa || lsb) {
 | |
| /* Computing MIN */
 | |
| /* Computing MAX */
 | |
| 		    d__5 = 1., d__6 = abs(acoeff), d__5 = f2cmax(d__5,d__6), 
 | |
| 			    d__6 = (d__1 = bcoeff.r, abs(d__1)) + (d__2 = 
 | |
| 			    d_imag(&bcoeff), abs(d__2));
 | |
| 		    d__3 = scale, d__4 = 1. / (safmin * f2cmax(d__5,d__6));
 | |
| 		    scale = f2cmin(d__3,d__4);
 | |
| 		    if (lsa) {
 | |
| 			acoeff = ascale * (scale * sbeta);
 | |
| 		    } else {
 | |
| 			acoeff = scale * acoeff;
 | |
| 		    }
 | |
| 		    if (lsb) {
 | |
| 			z__2.r = scale * salpha.r, z__2.i = scale * salpha.i;
 | |
| 			z__1.r = bscale * z__2.r, z__1.i = bscale * z__2.i;
 | |
| 			bcoeff.r = z__1.r, bcoeff.i = z__1.i;
 | |
| 		    } else {
 | |
| 			z__1.r = scale * bcoeff.r, z__1.i = scale * bcoeff.i;
 | |
| 			bcoeff.r = z__1.r, bcoeff.i = z__1.i;
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| 		acoefa = abs(acoeff);
 | |
| 		bcoefa = (d__1 = bcoeff.r, abs(d__1)) + (d__2 = d_imag(&
 | |
| 			bcoeff), abs(d__2));
 | |
| 		xmax = 1.;
 | |
| 		i__2 = *n;
 | |
| 		for (jr = 1; jr <= i__2; ++jr) {
 | |
| 		    i__3 = jr;
 | |
| 		    work[i__3].r = 0., work[i__3].i = 0.;
 | |
| /* L60: */
 | |
| 		}
 | |
| 		i__2 = je;
 | |
| 		work[i__2].r = 1., work[i__2].i = 0.;
 | |
| /* Computing MAX */
 | |
| 		d__1 = ulp * acoefa * anorm, d__2 = ulp * bcoefa * bnorm, 
 | |
| 			d__1 = f2cmax(d__1,d__2);
 | |
| 		dmin__ = f2cmax(d__1,safmin);
 | |
| 
 | |
| /*                                              H */
 | |
| /*              Triangular solve of  (a A - b B)  y = 0 */
 | |
| 
 | |
| /*                                      H */
 | |
| /*              (rowwise in  (a A - b B) , or columnwise in a A - b B) */
 | |
| 
 | |
| 		i__2 = *n;
 | |
| 		for (j = je + 1; j <= i__2; ++j) {
 | |
| 
 | |
| /*                 Compute */
 | |
| /*                       j-1 */
 | |
| /*                 SUM = sum  conjg( a*S(k,j) - b*P(k,j) )*x(k) */
 | |
| /*                       k=je */
 | |
| /*                 (Scale if necessary) */
 | |
| 
 | |
| 		    temp = 1. / xmax;
 | |
| 		    if (acoefa * rwork[j] + bcoefa * rwork[*n + j] > bignum * 
 | |
| 			    temp) {
 | |
| 			i__3 = j - 1;
 | |
| 			for (jr = je; jr <= i__3; ++jr) {
 | |
| 			    i__4 = jr;
 | |
| 			    i__5 = jr;
 | |
| 			    z__1.r = temp * work[i__5].r, z__1.i = temp * 
 | |
| 				    work[i__5].i;
 | |
| 			    work[i__4].r = z__1.r, work[i__4].i = z__1.i;
 | |
| /* L70: */
 | |
| 			}
 | |
| 			xmax = 1.;
 | |
| 		    }
 | |
| 		    suma.r = 0., suma.i = 0.;
 | |
| 		    sumb.r = 0., sumb.i = 0.;
 | |
| 
 | |
| 		    i__3 = j - 1;
 | |
| 		    for (jr = je; jr <= i__3; ++jr) {
 | |
| 			d_cnjg(&z__3, &s[jr + j * s_dim1]);
 | |
| 			i__4 = jr;
 | |
| 			z__2.r = z__3.r * work[i__4].r - z__3.i * work[i__4]
 | |
| 				.i, z__2.i = z__3.r * work[i__4].i + z__3.i * 
 | |
| 				work[i__4].r;
 | |
| 			z__1.r = suma.r + z__2.r, z__1.i = suma.i + z__2.i;
 | |
| 			suma.r = z__1.r, suma.i = z__1.i;
 | |
| 			d_cnjg(&z__3, &p[jr + j * p_dim1]);
 | |
| 			i__4 = jr;
 | |
| 			z__2.r = z__3.r * work[i__4].r - z__3.i * work[i__4]
 | |
| 				.i, z__2.i = z__3.r * work[i__4].i + z__3.i * 
 | |
| 				work[i__4].r;
 | |
| 			z__1.r = sumb.r + z__2.r, z__1.i = sumb.i + z__2.i;
 | |
| 			sumb.r = z__1.r, sumb.i = z__1.i;
 | |
| /* L80: */
 | |
| 		    }
 | |
| 		    z__2.r = acoeff * suma.r, z__2.i = acoeff * suma.i;
 | |
| 		    d_cnjg(&z__4, &bcoeff);
 | |
| 		    z__3.r = z__4.r * sumb.r - z__4.i * sumb.i, z__3.i = 
 | |
| 			    z__4.r * sumb.i + z__4.i * sumb.r;
 | |
| 		    z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
 | |
| 		    sum.r = z__1.r, sum.i = z__1.i;
 | |
| 
 | |
| /*                 Form x(j) = - SUM / conjg( a*S(j,j) - b*P(j,j) ) */
 | |
| 
 | |
| /*                 with scaling and perturbation of the denominator */
 | |
| 
 | |
| 		    i__3 = j + j * s_dim1;
 | |
| 		    z__3.r = acoeff * s[i__3].r, z__3.i = acoeff * s[i__3].i;
 | |
| 		    i__4 = j + j * p_dim1;
 | |
| 		    z__4.r = bcoeff.r * p[i__4].r - bcoeff.i * p[i__4].i, 
 | |
| 			    z__4.i = bcoeff.r * p[i__4].i + bcoeff.i * p[i__4]
 | |
| 			    .r;
 | |
| 		    z__2.r = z__3.r - z__4.r, z__2.i = z__3.i - z__4.i;
 | |
| 		    d_cnjg(&z__1, &z__2);
 | |
| 		    d__.r = z__1.r, d__.i = z__1.i;
 | |
| 		    if ((d__1 = d__.r, abs(d__1)) + (d__2 = d_imag(&d__), abs(
 | |
| 			    d__2)) <= dmin__) {
 | |
| 			z__1.r = dmin__, z__1.i = 0.;
 | |
| 			d__.r = z__1.r, d__.i = z__1.i;
 | |
| 		    }
 | |
| 
 | |
| 		    if ((d__1 = d__.r, abs(d__1)) + (d__2 = d_imag(&d__), abs(
 | |
| 			    d__2)) < 1.) {
 | |
| 			if ((d__1 = sum.r, abs(d__1)) + (d__2 = d_imag(&sum), 
 | |
| 				abs(d__2)) >= bignum * ((d__3 = d__.r, abs(
 | |
| 				d__3)) + (d__4 = d_imag(&d__), abs(d__4)))) {
 | |
| 			    temp = 1. / ((d__1 = sum.r, abs(d__1)) + (d__2 = 
 | |
| 				    d_imag(&sum), abs(d__2)));
 | |
| 			    i__3 = j - 1;
 | |
| 			    for (jr = je; jr <= i__3; ++jr) {
 | |
| 				i__4 = jr;
 | |
| 				i__5 = jr;
 | |
| 				z__1.r = temp * work[i__5].r, z__1.i = temp * 
 | |
| 					work[i__5].i;
 | |
| 				work[i__4].r = z__1.r, work[i__4].i = z__1.i;
 | |
| /* L90: */
 | |
| 			    }
 | |
| 			    xmax = temp * xmax;
 | |
| 			    z__1.r = temp * sum.r, z__1.i = temp * sum.i;
 | |
| 			    sum.r = z__1.r, sum.i = z__1.i;
 | |
| 			}
 | |
| 		    }
 | |
| 		    i__3 = j;
 | |
| 		    z__2.r = -sum.r, z__2.i = -sum.i;
 | |
| 		    zladiv_(&z__1, &z__2, &d__);
 | |
| 		    work[i__3].r = z__1.r, work[i__3].i = z__1.i;
 | |
| /* Computing MAX */
 | |
| 		    i__3 = j;
 | |
| 		    d__3 = xmax, d__4 = (d__1 = work[i__3].r, abs(d__1)) + (
 | |
| 			    d__2 = d_imag(&work[j]), abs(d__2));
 | |
| 		    xmax = f2cmax(d__3,d__4);
 | |
| /* L100: */
 | |
| 		}
 | |
| 
 | |
| /*              Back transform eigenvector if HOWMNY='B'. */
 | |
| 
 | |
| 		if (ilback) {
 | |
| 		    i__2 = *n + 1 - je;
 | |
| 		    zgemv_("N", n, &i__2, &c_b2, &vl[je * vl_dim1 + 1], ldvl, 
 | |
| 			    &work[je], &c__1, &c_b1, &work[*n + 1], &c__1);
 | |
| 		    isrc = 2;
 | |
| 		    ibeg = 1;
 | |
| 		} else {
 | |
| 		    isrc = 1;
 | |
| 		    ibeg = je;
 | |
| 		}
 | |
| 
 | |
| /*              Copy and scale eigenvector into column of VL */
 | |
| 
 | |
| 		xmax = 0.;
 | |
| 		i__2 = *n;
 | |
| 		for (jr = ibeg; jr <= i__2; ++jr) {
 | |
| /* Computing MAX */
 | |
| 		    i__3 = (isrc - 1) * *n + jr;
 | |
| 		    d__3 = xmax, d__4 = (d__1 = work[i__3].r, abs(d__1)) + (
 | |
| 			    d__2 = d_imag(&work[(isrc - 1) * *n + jr]), abs(
 | |
| 			    d__2));
 | |
| 		    xmax = f2cmax(d__3,d__4);
 | |
| /* L110: */
 | |
| 		}
 | |
| 
 | |
| 		if (xmax > safmin) {
 | |
| 		    temp = 1. / xmax;
 | |
| 		    i__2 = *n;
 | |
| 		    for (jr = ibeg; jr <= i__2; ++jr) {
 | |
| 			i__3 = jr + ieig * vl_dim1;
 | |
| 			i__4 = (isrc - 1) * *n + jr;
 | |
| 			z__1.r = temp * work[i__4].r, z__1.i = temp * work[
 | |
| 				i__4].i;
 | |
| 			vl[i__3].r = z__1.r, vl[i__3].i = z__1.i;
 | |
| /* L120: */
 | |
| 		    }
 | |
| 		} else {
 | |
| 		    ibeg = *n + 1;
 | |
| 		}
 | |
| 
 | |
| 		i__2 = ibeg - 1;
 | |
| 		for (jr = 1; jr <= i__2; ++jr) {
 | |
| 		    i__3 = jr + ieig * vl_dim1;
 | |
| 		    vl[i__3].r = 0., vl[i__3].i = 0.;
 | |
| /* L130: */
 | |
| 		}
 | |
| 
 | |
| 	    }
 | |
| L140:
 | |
| 	    ;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Right eigenvectors */
 | |
| 
 | |
|     if (compr) {
 | |
| 	ieig = im + 1;
 | |
| 
 | |
| /*        Main loop over eigenvalues */
 | |
| 
 | |
| 	for (je = *n; je >= 1; --je) {
 | |
| 	    if (ilall) {
 | |
| 		ilcomp = TRUE_;
 | |
| 	    } else {
 | |
| 		ilcomp = select[je];
 | |
| 	    }
 | |
| 	    if (ilcomp) {
 | |
| 		--ieig;
 | |
| 
 | |
| 		i__1 = je + je * s_dim1;
 | |
| 		i__2 = je + je * p_dim1;
 | |
| 		if ((d__2 = s[i__1].r, abs(d__2)) + (d__3 = d_imag(&s[je + je 
 | |
| 			* s_dim1]), abs(d__3)) <= safmin && (d__1 = p[i__2].r,
 | |
| 			 abs(d__1)) <= safmin) {
 | |
| 
 | |
| /*                 Singular matrix pencil -- return unit eigenvector */
 | |
| 
 | |
| 		    i__1 = *n;
 | |
| 		    for (jr = 1; jr <= i__1; ++jr) {
 | |
| 			i__2 = jr + ieig * vr_dim1;
 | |
| 			vr[i__2].r = 0., vr[i__2].i = 0.;
 | |
| /* L150: */
 | |
| 		    }
 | |
| 		    i__1 = ieig + ieig * vr_dim1;
 | |
| 		    vr[i__1].r = 1., vr[i__1].i = 0.;
 | |
| 		    goto L250;
 | |
| 		}
 | |
| 
 | |
| /*              Non-singular eigenvalue: */
 | |
| /*              Compute coefficients  a  and  b  in */
 | |
| 
 | |
| /*              ( a A - b B ) x  = 0 */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 		i__1 = je + je * s_dim1;
 | |
| 		i__2 = je + je * p_dim1;
 | |
| 		d__4 = ((d__2 = s[i__1].r, abs(d__2)) + (d__3 = d_imag(&s[je 
 | |
| 			+ je * s_dim1]), abs(d__3))) * ascale, d__5 = (d__1 = 
 | |
| 			p[i__2].r, abs(d__1)) * bscale, d__4 = f2cmax(d__4,d__5);
 | |
| 		temp = 1. / f2cmax(d__4,safmin);
 | |
| 		i__1 = je + je * s_dim1;
 | |
| 		z__2.r = temp * s[i__1].r, z__2.i = temp * s[i__1].i;
 | |
| 		z__1.r = ascale * z__2.r, z__1.i = ascale * z__2.i;
 | |
| 		salpha.r = z__1.r, salpha.i = z__1.i;
 | |
| 		i__1 = je + je * p_dim1;
 | |
| 		sbeta = temp * p[i__1].r * bscale;
 | |
| 		acoeff = sbeta * ascale;
 | |
| 		z__1.r = bscale * salpha.r, z__1.i = bscale * salpha.i;
 | |
| 		bcoeff.r = z__1.r, bcoeff.i = z__1.i;
 | |
| 
 | |
| /*              Scale to avoid underflow */
 | |
| 
 | |
| 		lsa = abs(sbeta) >= safmin && abs(acoeff) < small;
 | |
| 		lsb = (d__1 = salpha.r, abs(d__1)) + (d__2 = d_imag(&salpha), 
 | |
| 			abs(d__2)) >= safmin && (d__3 = bcoeff.r, abs(d__3)) 
 | |
| 			+ (d__4 = d_imag(&bcoeff), abs(d__4)) < small;
 | |
| 
 | |
| 		scale = 1.;
 | |
| 		if (lsa) {
 | |
| 		    scale = small / abs(sbeta) * f2cmin(anorm,big);
 | |
| 		}
 | |
| 		if (lsb) {
 | |
| /* Computing MAX */
 | |
| 		    d__3 = scale, d__4 = small / ((d__1 = salpha.r, abs(d__1))
 | |
| 			     + (d__2 = d_imag(&salpha), abs(d__2))) * f2cmin(
 | |
| 			    bnorm,big);
 | |
| 		    scale = f2cmax(d__3,d__4);
 | |
| 		}
 | |
| 		if (lsa || lsb) {
 | |
| /* Computing MIN */
 | |
| /* Computing MAX */
 | |
| 		    d__5 = 1., d__6 = abs(acoeff), d__5 = f2cmax(d__5,d__6), 
 | |
| 			    d__6 = (d__1 = bcoeff.r, abs(d__1)) + (d__2 = 
 | |
| 			    d_imag(&bcoeff), abs(d__2));
 | |
| 		    d__3 = scale, d__4 = 1. / (safmin * f2cmax(d__5,d__6));
 | |
| 		    scale = f2cmin(d__3,d__4);
 | |
| 		    if (lsa) {
 | |
| 			acoeff = ascale * (scale * sbeta);
 | |
| 		    } else {
 | |
| 			acoeff = scale * acoeff;
 | |
| 		    }
 | |
| 		    if (lsb) {
 | |
| 			z__2.r = scale * salpha.r, z__2.i = scale * salpha.i;
 | |
| 			z__1.r = bscale * z__2.r, z__1.i = bscale * z__2.i;
 | |
| 			bcoeff.r = z__1.r, bcoeff.i = z__1.i;
 | |
| 		    } else {
 | |
| 			z__1.r = scale * bcoeff.r, z__1.i = scale * bcoeff.i;
 | |
| 			bcoeff.r = z__1.r, bcoeff.i = z__1.i;
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| 		acoefa = abs(acoeff);
 | |
| 		bcoefa = (d__1 = bcoeff.r, abs(d__1)) + (d__2 = d_imag(&
 | |
| 			bcoeff), abs(d__2));
 | |
| 		xmax = 1.;
 | |
| 		i__1 = *n;
 | |
| 		for (jr = 1; jr <= i__1; ++jr) {
 | |
| 		    i__2 = jr;
 | |
| 		    work[i__2].r = 0., work[i__2].i = 0.;
 | |
| /* L160: */
 | |
| 		}
 | |
| 		i__1 = je;
 | |
| 		work[i__1].r = 1., work[i__1].i = 0.;
 | |
| /* Computing MAX */
 | |
| 		d__1 = ulp * acoefa * anorm, d__2 = ulp * bcoefa * bnorm, 
 | |
| 			d__1 = f2cmax(d__1,d__2);
 | |
| 		dmin__ = f2cmax(d__1,safmin);
 | |
| 
 | |
| /*              Triangular solve of  (a A - b B) x = 0  (columnwise) */
 | |
| 
 | |
| /*              WORK(1:j-1) contains sums w, */
 | |
| /*              WORK(j+1:JE) contains x */
 | |
| 
 | |
| 		i__1 = je - 1;
 | |
| 		for (jr = 1; jr <= i__1; ++jr) {
 | |
| 		    i__2 = jr;
 | |
| 		    i__3 = jr + je * s_dim1;
 | |
| 		    z__2.r = acoeff * s[i__3].r, z__2.i = acoeff * s[i__3].i;
 | |
| 		    i__4 = jr + je * p_dim1;
 | |
| 		    z__3.r = bcoeff.r * p[i__4].r - bcoeff.i * p[i__4].i, 
 | |
| 			    z__3.i = bcoeff.r * p[i__4].i + bcoeff.i * p[i__4]
 | |
| 			    .r;
 | |
| 		    z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
 | |
| 		    work[i__2].r = z__1.r, work[i__2].i = z__1.i;
 | |
| /* L170: */
 | |
| 		}
 | |
| 		i__1 = je;
 | |
| 		work[i__1].r = 1., work[i__1].i = 0.;
 | |
| 
 | |
| 		for (j = je - 1; j >= 1; --j) {
 | |
| 
 | |
| /*                 Form x(j) := - w(j) / d */
 | |
| /*                 with scaling and perturbation of the denominator */
 | |
| 
 | |
| 		    i__1 = j + j * s_dim1;
 | |
| 		    z__2.r = acoeff * s[i__1].r, z__2.i = acoeff * s[i__1].i;
 | |
| 		    i__2 = j + j * p_dim1;
 | |
| 		    z__3.r = bcoeff.r * p[i__2].r - bcoeff.i * p[i__2].i, 
 | |
| 			    z__3.i = bcoeff.r * p[i__2].i + bcoeff.i * p[i__2]
 | |
| 			    .r;
 | |
| 		    z__1.r = z__2.r - z__3.r, z__1.i = z__2.i - z__3.i;
 | |
| 		    d__.r = z__1.r, d__.i = z__1.i;
 | |
| 		    if ((d__1 = d__.r, abs(d__1)) + (d__2 = d_imag(&d__), abs(
 | |
| 			    d__2)) <= dmin__) {
 | |
| 			z__1.r = dmin__, z__1.i = 0.;
 | |
| 			d__.r = z__1.r, d__.i = z__1.i;
 | |
| 		    }
 | |
| 
 | |
| 		    if ((d__1 = d__.r, abs(d__1)) + (d__2 = d_imag(&d__), abs(
 | |
| 			    d__2)) < 1.) {
 | |
| 			i__1 = j;
 | |
| 			if ((d__1 = work[i__1].r, abs(d__1)) + (d__2 = d_imag(
 | |
| 				&work[j]), abs(d__2)) >= bignum * ((d__3 = 
 | |
| 				d__.r, abs(d__3)) + (d__4 = d_imag(&d__), abs(
 | |
| 				d__4)))) {
 | |
| 			    i__1 = j;
 | |
| 			    temp = 1. / ((d__1 = work[i__1].r, abs(d__1)) + (
 | |
| 				    d__2 = d_imag(&work[j]), abs(d__2)));
 | |
| 			    i__1 = je;
 | |
| 			    for (jr = 1; jr <= i__1; ++jr) {
 | |
| 				i__2 = jr;
 | |
| 				i__3 = jr;
 | |
| 				z__1.r = temp * work[i__3].r, z__1.i = temp * 
 | |
| 					work[i__3].i;
 | |
| 				work[i__2].r = z__1.r, work[i__2].i = z__1.i;
 | |
| /* L180: */
 | |
| 			    }
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		    i__1 = j;
 | |
| 		    i__2 = j;
 | |
| 		    z__2.r = -work[i__2].r, z__2.i = -work[i__2].i;
 | |
| 		    zladiv_(&z__1, &z__2, &d__);
 | |
| 		    work[i__1].r = z__1.r, work[i__1].i = z__1.i;
 | |
| 
 | |
| 		    if (j > 1) {
 | |
| 
 | |
| /*                    w = w + x(j)*(a S(*,j) - b P(*,j) ) with scaling */
 | |
| 
 | |
| 			i__1 = j;
 | |
| 			if ((d__1 = work[i__1].r, abs(d__1)) + (d__2 = d_imag(
 | |
| 				&work[j]), abs(d__2)) > 1.) {
 | |
| 			    i__1 = j;
 | |
| 			    temp = 1. / ((d__1 = work[i__1].r, abs(d__1)) + (
 | |
| 				    d__2 = d_imag(&work[j]), abs(d__2)));
 | |
| 			    if (acoefa * rwork[j] + bcoefa * rwork[*n + j] >= 
 | |
| 				    bignum * temp) {
 | |
| 				i__1 = je;
 | |
| 				for (jr = 1; jr <= i__1; ++jr) {
 | |
| 				    i__2 = jr;
 | |
| 				    i__3 = jr;
 | |
| 				    z__1.r = temp * work[i__3].r, z__1.i = 
 | |
| 					    temp * work[i__3].i;
 | |
| 				    work[i__2].r = z__1.r, work[i__2].i = 
 | |
| 					    z__1.i;
 | |
| /* L190: */
 | |
| 				}
 | |
| 			    }
 | |
| 			}
 | |
| 
 | |
| 			i__1 = j;
 | |
| 			z__1.r = acoeff * work[i__1].r, z__1.i = acoeff * 
 | |
| 				work[i__1].i;
 | |
| 			ca.r = z__1.r, ca.i = z__1.i;
 | |
| 			i__1 = j;
 | |
| 			z__1.r = bcoeff.r * work[i__1].r - bcoeff.i * work[
 | |
| 				i__1].i, z__1.i = bcoeff.r * work[i__1].i + 
 | |
| 				bcoeff.i * work[i__1].r;
 | |
| 			cb.r = z__1.r, cb.i = z__1.i;
 | |
| 			i__1 = j - 1;
 | |
| 			for (jr = 1; jr <= i__1; ++jr) {
 | |
| 			    i__2 = jr;
 | |
| 			    i__3 = jr;
 | |
| 			    i__4 = jr + j * s_dim1;
 | |
| 			    z__3.r = ca.r * s[i__4].r - ca.i * s[i__4].i, 
 | |
| 				    z__3.i = ca.r * s[i__4].i + ca.i * s[i__4]
 | |
| 				    .r;
 | |
| 			    z__2.r = work[i__3].r + z__3.r, z__2.i = work[
 | |
| 				    i__3].i + z__3.i;
 | |
| 			    i__5 = jr + j * p_dim1;
 | |
| 			    z__4.r = cb.r * p[i__5].r - cb.i * p[i__5].i, 
 | |
| 				    z__4.i = cb.r * p[i__5].i + cb.i * p[i__5]
 | |
| 				    .r;
 | |
| 			    z__1.r = z__2.r - z__4.r, z__1.i = z__2.i - 
 | |
| 				    z__4.i;
 | |
| 			    work[i__2].r = z__1.r, work[i__2].i = z__1.i;
 | |
| /* L200: */
 | |
| 			}
 | |
| 		    }
 | |
| /* L210: */
 | |
| 		}
 | |
| 
 | |
| /*              Back transform eigenvector if HOWMNY='B'. */
 | |
| 
 | |
| 		if (ilback) {
 | |
| 		    zgemv_("N", n, &je, &c_b2, &vr[vr_offset], ldvr, &work[1],
 | |
| 			     &c__1, &c_b1, &work[*n + 1], &c__1);
 | |
| 		    isrc = 2;
 | |
| 		    iend = *n;
 | |
| 		} else {
 | |
| 		    isrc = 1;
 | |
| 		    iend = je;
 | |
| 		}
 | |
| 
 | |
| /*              Copy and scale eigenvector into column of VR */
 | |
| 
 | |
| 		xmax = 0.;
 | |
| 		i__1 = iend;
 | |
| 		for (jr = 1; jr <= i__1; ++jr) {
 | |
| /* Computing MAX */
 | |
| 		    i__2 = (isrc - 1) * *n + jr;
 | |
| 		    d__3 = xmax, d__4 = (d__1 = work[i__2].r, abs(d__1)) + (
 | |
| 			    d__2 = d_imag(&work[(isrc - 1) * *n + jr]), abs(
 | |
| 			    d__2));
 | |
| 		    xmax = f2cmax(d__3,d__4);
 | |
| /* L220: */
 | |
| 		}
 | |
| 
 | |
| 		if (xmax > safmin) {
 | |
| 		    temp = 1. / xmax;
 | |
| 		    i__1 = iend;
 | |
| 		    for (jr = 1; jr <= i__1; ++jr) {
 | |
| 			i__2 = jr + ieig * vr_dim1;
 | |
| 			i__3 = (isrc - 1) * *n + jr;
 | |
| 			z__1.r = temp * work[i__3].r, z__1.i = temp * work[
 | |
| 				i__3].i;
 | |
| 			vr[i__2].r = z__1.r, vr[i__2].i = z__1.i;
 | |
| /* L230: */
 | |
| 		    }
 | |
| 		} else {
 | |
| 		    iend = 0;
 | |
| 		}
 | |
| 
 | |
| 		i__1 = *n;
 | |
| 		for (jr = iend + 1; jr <= i__1; ++jr) {
 | |
| 		    i__2 = jr + ieig * vr_dim1;
 | |
| 		    vr[i__2].r = 0., vr[i__2].i = 0.;
 | |
| /* L240: */
 | |
| 		}
 | |
| 
 | |
| 	    }
 | |
| L250:
 | |
| 	    ;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of ZTGEVC */
 | |
| 
 | |
| } /* ztgevc_ */
 | |
| 
 |