1589 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1589 lines
		
	
	
		
			44 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle_() continue;
 | |
| #define myceiling_(w) {ceil(w)}
 | |
| #define myhuge_(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static doublecomplex c_b1 = {1.,0.};
 | |
| 
 | |
| /* > \brief \b ZTFSM solves a matrix equation (one operand is a triangular matrix in RFP format). */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download ZTFSM + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztfsm.f
 | |
| "> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztfsm.f
 | |
| "> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztfsm.f
 | |
| "> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE ZTFSM( TRANSR, SIDE, UPLO, TRANS, DIAG, M, N, ALPHA, A, */
 | |
| /*                         B, LDB ) */
 | |
| 
 | |
| /*       CHARACTER          TRANSR, DIAG, SIDE, TRANS, UPLO */
 | |
| /*       INTEGER            LDB, M, N */
 | |
| /*       COMPLEX*16         ALPHA */
 | |
| /*       COMPLEX*16         A( 0: * ), B( 0: LDB-1, 0: * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > Level 3 BLAS like routine for A in RFP Format. */
 | |
| /* > */
 | |
| /* > ZTFSM  solves the matrix equation */
 | |
| /* > */
 | |
| /* >    op( A )*X = alpha*B  or  X*op( A ) = alpha*B */
 | |
| /* > */
 | |
| /* > where alpha is a scalar, X and B are m by n matrices, A is a unit, or */
 | |
| /* > non-unit,  upper or lower triangular matrix  and  op( A )  is one  of */
 | |
| /* > */
 | |
| /* >    op( A ) = A   or   op( A ) = A**H. */
 | |
| /* > */
 | |
| /* > A is in Rectangular Full Packed (RFP) Format. */
 | |
| /* > */
 | |
| /* > The matrix X is overwritten on B. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] TRANSR */
 | |
| /* > \verbatim */
 | |
| /* >          TRANSR is CHARACTER*1 */
 | |
| /* >          = 'N':  The Normal Form of RFP A is stored; */
 | |
| /* >          = 'C':  The Conjugate-transpose Form of RFP A is stored. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] SIDE */
 | |
| /* > \verbatim */
 | |
| /* >          SIDE is CHARACTER*1 */
 | |
| /* >           On entry, SIDE specifies whether op( A ) appears on the left */
 | |
| /* >           or right of X as follows: */
 | |
| /* > */
 | |
| /* >              SIDE = 'L' or 'l'   op( A )*X = alpha*B. */
 | |
| /* > */
 | |
| /* >              SIDE = 'R' or 'r'   X*op( A ) = alpha*B. */
 | |
| /* > */
 | |
| /* >           Unchanged on exit. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] UPLO */
 | |
| /* > \verbatim */
 | |
| /* >          UPLO is CHARACTER*1 */
 | |
| /* >           On entry, UPLO specifies whether the RFP matrix A came from */
 | |
| /* >           an upper or lower triangular matrix as follows: */
 | |
| /* >           UPLO = 'U' or 'u' RFP A came from an upper triangular matrix */
 | |
| /* >           UPLO = 'L' or 'l' RFP A came from a  lower triangular matrix */
 | |
| /* > */
 | |
| /* >           Unchanged on exit. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] TRANS */
 | |
| /* > \verbatim */
 | |
| /* >          TRANS is CHARACTER*1 */
 | |
| /* >           On entry, TRANS  specifies the form of op( A ) to be used */
 | |
| /* >           in the matrix multiplication as follows: */
 | |
| /* > */
 | |
| /* >              TRANS  = 'N' or 'n'   op( A ) = A. */
 | |
| /* > */
 | |
| /* >              TRANS  = 'C' or 'c'   op( A ) = conjg( A' ). */
 | |
| /* > */
 | |
| /* >           Unchanged on exit. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] DIAG */
 | |
| /* > \verbatim */
 | |
| /* >          DIAG is CHARACTER*1 */
 | |
| /* >           On entry, DIAG specifies whether or not RFP A is unit */
 | |
| /* >           triangular as follows: */
 | |
| /* > */
 | |
| /* >              DIAG = 'U' or 'u'   A is assumed to be unit triangular. */
 | |
| /* > */
 | |
| /* >              DIAG = 'N' or 'n'   A is not assumed to be unit */
 | |
| /* >                                  triangular. */
 | |
| /* > */
 | |
| /* >           Unchanged on exit. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >           On entry, M specifies the number of rows of B. M must be at */
 | |
| /* >           least zero. */
 | |
| /* >           Unchanged on exit. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >           On entry, N specifies the number of columns of B.  N must be */
 | |
| /* >           at least zero. */
 | |
| /* >           Unchanged on exit. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] ALPHA */
 | |
| /* > \verbatim */
 | |
| /* >          ALPHA is COMPLEX*16 */
 | |
| /* >           On entry,  ALPHA specifies the scalar  alpha. When  alpha is */
 | |
| /* >           zero then  A is not referenced and  B need not be set before */
 | |
| /* >           entry. */
 | |
| /* >           Unchanged on exit. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is COMPLEX*16 array, dimension (N*(N+1)/2) */
 | |
| /* >           NT = N*(N+1)/2. On entry, the matrix A in RFP Format. */
 | |
| /* >           RFP Format is described by TRANSR, UPLO and N as follows: */
 | |
| /* >           If TRANSR='N' then RFP A is (0:N,0:K-1) when N is even; */
 | |
| /* >           K=N/2. RFP A is (0:N-1,0:K) when N is odd; K=N/2. If */
 | |
| /* >           TRANSR = 'C' then RFP is the Conjugate-transpose of RFP A as */
 | |
| /* >           defined when TRANSR = 'N'. The contents of RFP A are defined */
 | |
| /* >           by UPLO as follows: If UPLO = 'U' the RFP A contains the NT */
 | |
| /* >           elements of upper packed A either in normal or */
 | |
| /* >           conjugate-transpose Format. If UPLO = 'L' the RFP A contains */
 | |
| /* >           the NT elements of lower packed A either in normal or */
 | |
| /* >           conjugate-transpose Format. The LDA of RFP A is (N+1)/2 when */
 | |
| /* >           TRANSR = 'C'. When TRANSR is 'N' the LDA is N+1 when N is */
 | |
| /* >           even and is N when is odd. */
 | |
| /* >           See the Note below for more details. Unchanged on exit. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] B */
 | |
| /* > \verbatim */
 | |
| /* >          B is COMPLEX*16 array, dimension (LDB,N) */
 | |
| /* >           Before entry,  the leading  m by n part of the array  B must */
 | |
| /* >           contain  the  right-hand  side  matrix  B,  and  on exit  is */
 | |
| /* >           overwritten by the solution matrix  X. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDB */
 | |
| /* > \verbatim */
 | |
| /* >          LDB is INTEGER */
 | |
| /* >           On entry, LDB specifies the first dimension of B as declared */
 | |
| /* >           in  the  calling  (sub)  program.   LDB  must  be  at  least */
 | |
| /* >           f2cmax( 1, m ). */
 | |
| /* >           Unchanged on exit. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup complex16OTHERcomputational */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  We first consider Standard Packed Format when N is even. */
 | |
| /* >  We give an example where N = 6. */
 | |
| /* > */
 | |
| /* >      AP is Upper             AP is Lower */
 | |
| /* > */
 | |
| /* >   00 01 02 03 04 05       00 */
 | |
| /* >      11 12 13 14 15       10 11 */
 | |
| /* >         22 23 24 25       20 21 22 */
 | |
| /* >            33 34 35       30 31 32 33 */
 | |
| /* >               44 45       40 41 42 43 44 */
 | |
| /* >                  55       50 51 52 53 54 55 */
 | |
| /* > */
 | |
| /* > */
 | |
| /* >  Let TRANSR = 'N'. RFP holds AP as follows: */
 | |
| /* >  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
 | |
| /* >  three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
 | |
| /* >  conjugate-transpose of the first three columns of AP upper. */
 | |
| /* >  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
 | |
| /* >  three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
 | |
| /* >  conjugate-transpose of the last three columns of AP lower. */
 | |
| /* >  To denote conjugate we place -- above the element. This covers the */
 | |
| /* >  case N even and TRANSR = 'N'. */
 | |
| /* > */
 | |
| /* >         RFP A                   RFP A */
 | |
| /* > */
 | |
| /* >                                -- -- -- */
 | |
| /* >        03 04 05                33 43 53 */
 | |
| /* >                                   -- -- */
 | |
| /* >        13 14 15                00 44 54 */
 | |
| /* >                                      -- */
 | |
| /* >        23 24 25                10 11 55 */
 | |
| /* > */
 | |
| /* >        33 34 35                20 21 22 */
 | |
| /* >        -- */
 | |
| /* >        00 44 45                30 31 32 */
 | |
| /* >        -- -- */
 | |
| /* >        01 11 55                40 41 42 */
 | |
| /* >        -- -- -- */
 | |
| /* >        02 12 22                50 51 52 */
 | |
| /* > */
 | |
| /* >  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */
 | |
| /* >  transpose of RFP A above. One therefore gets: */
 | |
| /* > */
 | |
| /* > */
 | |
| /* >           RFP A                   RFP A */
 | |
| /* > */
 | |
| /* >     -- -- -- --                -- -- -- -- -- -- */
 | |
| /* >     03 13 23 33 00 01 02    33 00 10 20 30 40 50 */
 | |
| /* >     -- -- -- -- --                -- -- -- -- -- */
 | |
| /* >     04 14 24 34 44 11 12    43 44 11 21 31 41 51 */
 | |
| /* >     -- -- -- -- -- --                -- -- -- -- */
 | |
| /* >     05 15 25 35 45 55 22    53 54 55 22 32 42 52 */
 | |
| /* > */
 | |
| /* > */
 | |
| /* >  We next  consider Standard Packed Format when N is odd. */
 | |
| /* >  We give an example where N = 5. */
 | |
| /* > */
 | |
| /* >     AP is Upper                 AP is Lower */
 | |
| /* > */
 | |
| /* >   00 01 02 03 04              00 */
 | |
| /* >      11 12 13 14              10 11 */
 | |
| /* >         22 23 24              20 21 22 */
 | |
| /* >            33 34              30 31 32 33 */
 | |
| /* >               44              40 41 42 43 44 */
 | |
| /* > */
 | |
| /* > */
 | |
| /* >  Let TRANSR = 'N'. RFP holds AP as follows: */
 | |
| /* >  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
 | |
| /* >  three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
 | |
| /* >  conjugate-transpose of the first two   columns of AP upper. */
 | |
| /* >  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
 | |
| /* >  three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
 | |
| /* >  conjugate-transpose of the last two   columns of AP lower. */
 | |
| /* >  To denote conjugate we place -- above the element. This covers the */
 | |
| /* >  case N odd  and TRANSR = 'N'. */
 | |
| /* > */
 | |
| /* >         RFP A                   RFP A */
 | |
| /* > */
 | |
| /* >                                   -- -- */
 | |
| /* >        02 03 04                00 33 43 */
 | |
| /* >                                      -- */
 | |
| /* >        12 13 14                10 11 44 */
 | |
| /* > */
 | |
| /* >        22 23 24                20 21 22 */
 | |
| /* >        -- */
 | |
| /* >        00 33 34                30 31 32 */
 | |
| /* >        -- -- */
 | |
| /* >        01 11 44                40 41 42 */
 | |
| /* > */
 | |
| /* >  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */
 | |
| /* >  transpose of RFP A above. One therefore gets: */
 | |
| /* > */
 | |
| /* > */
 | |
| /* >           RFP A                   RFP A */
 | |
| /* > */
 | |
| /* >     -- -- --                   -- -- -- -- -- -- */
 | |
| /* >     02 12 22 00 01             00 10 20 30 40 50 */
 | |
| /* >     -- -- -- --                   -- -- -- -- -- */
 | |
| /* >     03 13 23 33 11             33 11 21 31 41 51 */
 | |
| /* >     -- -- -- -- --                   -- -- -- -- */
 | |
| /* >     04 14 24 34 44             43 44 22 32 42 52 */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void ztfsm_(char *transr, char *side, char *uplo, char *trans,
 | |
| 	 char *diag, integer *m, integer *n, doublecomplex *alpha, 
 | |
| 	doublecomplex *a, doublecomplex *b, integer *ldb)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer b_dim1, b_offset, i__1, i__2, i__3;
 | |
|     doublecomplex z__1;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer info, i__, j, k;
 | |
|     logical normaltransr, lside;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     extern /* Subroutine */ void zgemm_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, doublecomplex *, doublecomplex *, integer *, 
 | |
| 	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
 | |
| 	    integer *);
 | |
|     logical lower;
 | |
|     integer m1, m2, n1, n2;
 | |
|     extern /* Subroutine */ void ztrsm_(char *, char *, char *, char *, 
 | |
| 	    integer *, integer *, doublecomplex *, doublecomplex *, integer *,
 | |
| 	     doublecomplex *, integer *); 
 | |
|     extern int xerbla_(char *, integer *, ftnlen);
 | |
|     logical misodd, nisodd, notrans;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     b_dim1 = *ldb - 1 - 0 + 1;
 | |
|     b_offset = 0 + b_dim1 * 0;
 | |
|     b -= b_offset;
 | |
| 
 | |
|     /* Function Body */
 | |
|     info = 0;
 | |
|     normaltransr = lsame_(transr, "N");
 | |
|     lside = lsame_(side, "L");
 | |
|     lower = lsame_(uplo, "L");
 | |
|     notrans = lsame_(trans, "N");
 | |
|     if (! normaltransr && ! lsame_(transr, "C")) {
 | |
| 	info = -1;
 | |
|     } else if (! lside && ! lsame_(side, "R")) {
 | |
| 	info = -2;
 | |
|     } else if (! lower && ! lsame_(uplo, "U")) {
 | |
| 	info = -3;
 | |
|     } else if (! notrans && ! lsame_(trans, "C")) {
 | |
| 	info = -4;
 | |
|     } else if (! lsame_(diag, "N") && ! lsame_(diag, 
 | |
| 	    "U")) {
 | |
| 	info = -5;
 | |
|     } else if (*m < 0) {
 | |
| 	info = -6;
 | |
|     } else if (*n < 0) {
 | |
| 	info = -7;
 | |
|     } else if (*ldb < f2cmax(1,*m)) {
 | |
| 	info = -11;
 | |
|     }
 | |
|     if (info != 0) {
 | |
| 	i__1 = -info;
 | |
| 	xerbla_("ZTFSM ", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return when ( (N.EQ.0).OR.(M.EQ.0) ) */
 | |
| 
 | |
|     if (*m == 0 || *n == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return when ALPHA.EQ.(0D+0,0D+0) */
 | |
| 
 | |
|     if (alpha->r == 0. && alpha->i == 0.) {
 | |
| 	i__1 = *n - 1;
 | |
| 	for (j = 0; j <= i__1; ++j) {
 | |
| 	    i__2 = *m - 1;
 | |
| 	    for (i__ = 0; i__ <= i__2; ++i__) {
 | |
| 		i__3 = i__ + j * b_dim1;
 | |
| 		b[i__3].r = 0., b[i__3].i = 0.;
 | |
| /* L10: */
 | |
| 	    }
 | |
| /* L20: */
 | |
| 	}
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     if (lside) {
 | |
| 
 | |
| /*        SIDE = 'L' */
 | |
| 
 | |
| /*        A is M-by-M. */
 | |
| /*        If M is odd, set NISODD = .TRUE., and M1 and M2. */
 | |
| /*        If M is even, NISODD = .FALSE., and M. */
 | |
| 
 | |
| 	if (*m % 2 == 0) {
 | |
| 	    misodd = FALSE_;
 | |
| 	    k = *m / 2;
 | |
| 	} else {
 | |
| 	    misodd = TRUE_;
 | |
| 	    if (lower) {
 | |
| 		m2 = *m / 2;
 | |
| 		m1 = *m - m2;
 | |
| 	    } else {
 | |
| 		m1 = *m / 2;
 | |
| 		m2 = *m - m1;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	if (misodd) {
 | |
| 
 | |
| /*           SIDE = 'L' and N is odd */
 | |
| 
 | |
| 	    if (normaltransr) {
 | |
| 
 | |
| /*              SIDE = 'L', N is odd, and TRANSR = 'N' */
 | |
| 
 | |
| 		if (lower) {
 | |
| 
 | |
| /*                 SIDE  ='L', N is odd, TRANSR = 'N', and UPLO = 'L' */
 | |
| 
 | |
| 		    if (notrans) {
 | |
| 
 | |
| /*                    SIDE  ='L', N is odd, TRANSR = 'N', UPLO = 'L', and */
 | |
| /*                    TRANS = 'N' */
 | |
| 
 | |
| 			if (*m == 1) {
 | |
| 			    ztrsm_("L", "L", "N", diag, &m1, n, alpha, a, m, &
 | |
| 				    b[b_offset], ldb);
 | |
| 			} else {
 | |
| 			    ztrsm_("L", "L", "N", diag, &m1, n, alpha, a, m, &
 | |
| 				    b[b_offset], ldb);
 | |
| 			    z__1.r = -1., z__1.i = 0.;
 | |
| 			    zgemm_("N", "N", &m2, n, &m1, &z__1, &a[m1], m, &
 | |
| 				    b[b_offset], ldb, alpha, &b[m1], ldb);
 | |
| 			    ztrsm_("L", "U", "C", diag, &m2, n, &c_b1, &a[*m],
 | |
| 				     m, &b[m1], ldb);
 | |
| 			}
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    SIDE  ='L', N is odd, TRANSR = 'N', UPLO = 'L', and */
 | |
| /*                    TRANS = 'C' */
 | |
| 
 | |
| 			if (*m == 1) {
 | |
| 			    ztrsm_("L", "L", "C", diag, &m1, n, alpha, a, m, &
 | |
| 				    b[b_offset], ldb);
 | |
| 			} else {
 | |
| 			    ztrsm_("L", "U", "N", diag, &m2, n, alpha, &a[*m],
 | |
| 				     m, &b[m1], ldb);
 | |
| 			    z__1.r = -1., z__1.i = 0.;
 | |
| 			    zgemm_("C", "N", &m1, n, &m2, &z__1, &a[m1], m, &
 | |
| 				    b[m1], ldb, alpha, &b[b_offset], ldb);
 | |
| 			    ztrsm_("L", "L", "C", diag, &m1, n, &c_b1, a, m, &
 | |
| 				    b[b_offset], ldb);
 | |
| 			}
 | |
| 
 | |
| 		    }
 | |
| 
 | |
| 		} else {
 | |
| 
 | |
| /*                 SIDE  ='L', N is odd, TRANSR = 'N', and UPLO = 'U' */
 | |
| 
 | |
| 		    if (! notrans) {
 | |
| 
 | |
| /*                    SIDE  ='L', N is odd, TRANSR = 'N', UPLO = 'U', and */
 | |
| /*                    TRANS = 'N' */
 | |
| 
 | |
| 			ztrsm_("L", "L", "N", diag, &m1, n, alpha, &a[m2], m, 
 | |
| 				&b[b_offset], ldb);
 | |
| 			z__1.r = -1., z__1.i = 0.;
 | |
| 			zgemm_("C", "N", &m2, n, &m1, &z__1, a, m, &b[
 | |
| 				b_offset], ldb, alpha, &b[m1], ldb);
 | |
| 			ztrsm_("L", "U", "C", diag, &m2, n, &c_b1, &a[m1], m, 
 | |
| 				&b[m1], ldb);
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    SIDE  ='L', N is odd, TRANSR = 'N', UPLO = 'U', and */
 | |
| /*                    TRANS = 'C' */
 | |
| 
 | |
| 			ztrsm_("L", "U", "N", diag, &m2, n, alpha, &a[m1], m, 
 | |
| 				&b[m1], ldb);
 | |
| 			z__1.r = -1., z__1.i = 0.;
 | |
| 			zgemm_("N", "N", &m1, n, &m2, &z__1, a, m, &b[m1], 
 | |
| 				ldb, alpha, &b[b_offset], ldb);
 | |
| 			ztrsm_("L", "L", "C", diag, &m1, n, &c_b1, &a[m2], m, 
 | |
| 				&b[b_offset], ldb);
 | |
| 
 | |
| 		    }
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 	    } else {
 | |
| 
 | |
| /*              SIDE = 'L', N is odd, and TRANSR = 'C' */
 | |
| 
 | |
| 		if (lower) {
 | |
| 
 | |
| /*                 SIDE  ='L', N is odd, TRANSR = 'C', and UPLO = 'L' */
 | |
| 
 | |
| 		    if (notrans) {
 | |
| 
 | |
| /*                    SIDE  ='L', N is odd, TRANSR = 'C', UPLO = 'L', and */
 | |
| /*                    TRANS = 'N' */
 | |
| 
 | |
| 			if (*m == 1) {
 | |
| 			    ztrsm_("L", "U", "C", diag, &m1, n, alpha, a, &m1,
 | |
| 				     &b[b_offset], ldb);
 | |
| 			} else {
 | |
| 			    ztrsm_("L", "U", "C", diag, &m1, n, alpha, a, &m1,
 | |
| 				     &b[b_offset], ldb);
 | |
| 			    z__1.r = -1., z__1.i = 0.;
 | |
| 			    zgemm_("C", "N", &m2, n, &m1, &z__1, &a[m1 * m1], 
 | |
| 				    &m1, &b[b_offset], ldb, alpha, &b[m1], 
 | |
| 				    ldb);
 | |
| 			    ztrsm_("L", "L", "N", diag, &m2, n, &c_b1, &a[1], 
 | |
| 				    &m1, &b[m1], ldb);
 | |
| 			}
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    SIDE  ='L', N is odd, TRANSR = 'C', UPLO = 'L', and */
 | |
| /*                    TRANS = 'C' */
 | |
| 
 | |
| 			if (*m == 1) {
 | |
| 			    ztrsm_("L", "U", "N", diag, &m1, n, alpha, a, &m1,
 | |
| 				     &b[b_offset], ldb);
 | |
| 			} else {
 | |
| 			    ztrsm_("L", "L", "C", diag, &m2, n, alpha, &a[1], 
 | |
| 				    &m1, &b[m1], ldb);
 | |
| 			    z__1.r = -1., z__1.i = 0.;
 | |
| 			    zgemm_("N", "N", &m1, n, &m2, &z__1, &a[m1 * m1], 
 | |
| 				    &m1, &b[m1], ldb, alpha, &b[b_offset], 
 | |
| 				    ldb);
 | |
| 			    ztrsm_("L", "U", "N", diag, &m1, n, &c_b1, a, &m1,
 | |
| 				     &b[b_offset], ldb);
 | |
| 			}
 | |
| 
 | |
| 		    }
 | |
| 
 | |
| 		} else {
 | |
| 
 | |
| /*                 SIDE  ='L', N is odd, TRANSR = 'C', and UPLO = 'U' */
 | |
| 
 | |
| 		    if (! notrans) {
 | |
| 
 | |
| /*                    SIDE  ='L', N is odd, TRANSR = 'C', UPLO = 'U', and */
 | |
| /*                    TRANS = 'N' */
 | |
| 
 | |
| 			ztrsm_("L", "U", "C", diag, &m1, n, alpha, &a[m2 * m2]
 | |
| 				, &m2, &b[b_offset], ldb);
 | |
| 			z__1.r = -1., z__1.i = 0.;
 | |
| 			zgemm_("N", "N", &m2, n, &m1, &z__1, a, &m2, &b[
 | |
| 				b_offset], ldb, alpha, &b[m1], ldb);
 | |
| 			ztrsm_("L", "L", "N", diag, &m2, n, &c_b1, &a[m1 * m2]
 | |
| 				, &m2, &b[m1], ldb);
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    SIDE  ='L', N is odd, TRANSR = 'C', UPLO = 'U', and */
 | |
| /*                    TRANS = 'C' */
 | |
| 
 | |
| 			ztrsm_("L", "L", "C", diag, &m2, n, alpha, &a[m1 * m2]
 | |
| 				, &m2, &b[m1], ldb);
 | |
| 			z__1.r = -1., z__1.i = 0.;
 | |
| 			zgemm_("C", "N", &m1, n, &m2, &z__1, a, &m2, &b[m1], 
 | |
| 				ldb, alpha, &b[b_offset], ldb);
 | |
| 			ztrsm_("L", "U", "N", diag, &m1, n, &c_b1, &a[m2 * m2]
 | |
| 				, &m2, &b[b_offset], ldb);
 | |
| 
 | |
| 		    }
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 	    }
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| /*           SIDE = 'L' and N is even */
 | |
| 
 | |
| 	    if (normaltransr) {
 | |
| 
 | |
| /*              SIDE = 'L', N is even, and TRANSR = 'N' */
 | |
| 
 | |
| 		if (lower) {
 | |
| 
 | |
| /*                 SIDE  ='L', N is even, TRANSR = 'N', and UPLO = 'L' */
 | |
| 
 | |
| 		    if (notrans) {
 | |
| 
 | |
| /*                    SIDE  ='L', N is even, TRANSR = 'N', UPLO = 'L', */
 | |
| /*                    and TRANS = 'N' */
 | |
| 
 | |
| 			i__1 = *m + 1;
 | |
| 			ztrsm_("L", "L", "N", diag, &k, n, alpha, &a[1], &
 | |
| 				i__1, &b[b_offset], ldb);
 | |
| 			z__1.r = -1., z__1.i = 0.;
 | |
| 			i__1 = *m + 1;
 | |
| 			zgemm_("N", "N", &k, n, &k, &z__1, &a[k + 1], &i__1, &
 | |
| 				b[b_offset], ldb, alpha, &b[k], ldb);
 | |
| 			i__1 = *m + 1;
 | |
| 			ztrsm_("L", "U", "C", diag, &k, n, &c_b1, a, &i__1, &
 | |
| 				b[k], ldb);
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    SIDE  ='L', N is even, TRANSR = 'N', UPLO = 'L', */
 | |
| /*                    and TRANS = 'C' */
 | |
| 
 | |
| 			i__1 = *m + 1;
 | |
| 			ztrsm_("L", "U", "N", diag, &k, n, alpha, a, &i__1, &
 | |
| 				b[k], ldb);
 | |
| 			z__1.r = -1., z__1.i = 0.;
 | |
| 			i__1 = *m + 1;
 | |
| 			zgemm_("C", "N", &k, n, &k, &z__1, &a[k + 1], &i__1, &
 | |
| 				b[k], ldb, alpha, &b[b_offset], ldb);
 | |
| 			i__1 = *m + 1;
 | |
| 			ztrsm_("L", "L", "C", diag, &k, n, &c_b1, &a[1], &
 | |
| 				i__1, &b[b_offset], ldb);
 | |
| 
 | |
| 		    }
 | |
| 
 | |
| 		} else {
 | |
| 
 | |
| /*                 SIDE  ='L', N is even, TRANSR = 'N', and UPLO = 'U' */
 | |
| 
 | |
| 		    if (! notrans) {
 | |
| 
 | |
| /*                    SIDE  ='L', N is even, TRANSR = 'N', UPLO = 'U', */
 | |
| /*                    and TRANS = 'N' */
 | |
| 
 | |
| 			i__1 = *m + 1;
 | |
| 			ztrsm_("L", "L", "N", diag, &k, n, alpha, &a[k + 1], &
 | |
| 				i__1, &b[b_offset], ldb);
 | |
| 			z__1.r = -1., z__1.i = 0.;
 | |
| 			i__1 = *m + 1;
 | |
| 			zgemm_("C", "N", &k, n, &k, &z__1, a, &i__1, &b[
 | |
| 				b_offset], ldb, alpha, &b[k], ldb);
 | |
| 			i__1 = *m + 1;
 | |
| 			ztrsm_("L", "U", "C", diag, &k, n, &c_b1, &a[k], &
 | |
| 				i__1, &b[k], ldb);
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    SIDE  ='L', N is even, TRANSR = 'N', UPLO = 'U', */
 | |
| /*                    and TRANS = 'C' */
 | |
| 			i__1 = *m + 1;
 | |
| 			ztrsm_("L", "U", "N", diag, &k, n, alpha, &a[k], &
 | |
| 				i__1, &b[k], ldb);
 | |
| 			z__1.r = -1., z__1.i = 0.;
 | |
| 			i__1 = *m + 1;
 | |
| 			zgemm_("N", "N", &k, n, &k, &z__1, a, &i__1, &b[k], 
 | |
| 				ldb, alpha, &b[b_offset], ldb);
 | |
| 			i__1 = *m + 1;
 | |
| 			ztrsm_("L", "L", "C", diag, &k, n, &c_b1, &a[k + 1], &
 | |
| 				i__1, &b[b_offset], ldb);
 | |
| 
 | |
| 		    }
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 	    } else {
 | |
| 
 | |
| /*              SIDE = 'L', N is even, and TRANSR = 'C' */
 | |
| 
 | |
| 		if (lower) {
 | |
| 
 | |
| /*                 SIDE  ='L', N is even, TRANSR = 'C', and UPLO = 'L' */
 | |
| 
 | |
| 		    if (notrans) {
 | |
| 
 | |
| /*                    SIDE  ='L', N is even, TRANSR = 'C', UPLO = 'L', */
 | |
| /*                    and TRANS = 'N' */
 | |
| 
 | |
| 			ztrsm_("L", "U", "C", diag, &k, n, alpha, &a[k], &k, &
 | |
| 				b[b_offset], ldb);
 | |
| 			z__1.r = -1., z__1.i = 0.;
 | |
| 			zgemm_("C", "N", &k, n, &k, &z__1, &a[k * (k + 1)], &
 | |
| 				k, &b[b_offset], ldb, alpha, &b[k], ldb);
 | |
| 			ztrsm_("L", "L", "N", diag, &k, n, &c_b1, a, &k, &b[k]
 | |
| 				, ldb);
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    SIDE  ='L', N is even, TRANSR = 'C', UPLO = 'L', */
 | |
| /*                    and TRANS = 'C' */
 | |
| 
 | |
| 			ztrsm_("L", "L", "C", diag, &k, n, alpha, a, &k, &b[k]
 | |
| 				, ldb);
 | |
| 			z__1.r = -1., z__1.i = 0.;
 | |
| 			zgemm_("N", "N", &k, n, &k, &z__1, &a[k * (k + 1)], &
 | |
| 				k, &b[k], ldb, alpha, &b[b_offset], ldb);
 | |
| 			ztrsm_("L", "U", "N", diag, &k, n, &c_b1, &a[k], &k, &
 | |
| 				b[b_offset], ldb);
 | |
| 
 | |
| 		    }
 | |
| 
 | |
| 		} else {
 | |
| 
 | |
| /*                 SIDE  ='L', N is even, TRANSR = 'C', and UPLO = 'U' */
 | |
| 
 | |
| 		    if (! notrans) {
 | |
| 
 | |
| /*                    SIDE  ='L', N is even, TRANSR = 'C', UPLO = 'U', */
 | |
| /*                    and TRANS = 'N' */
 | |
| 
 | |
| 			ztrsm_("L", "U", "C", diag, &k, n, alpha, &a[k * (k + 
 | |
| 				1)], &k, &b[b_offset], ldb);
 | |
| 			z__1.r = -1., z__1.i = 0.;
 | |
| 			zgemm_("N", "N", &k, n, &k, &z__1, a, &k, &b[b_offset]
 | |
| 				, ldb, alpha, &b[k], ldb);
 | |
| 			ztrsm_("L", "L", "N", diag, &k, n, &c_b1, &a[k * k], &
 | |
| 				k, &b[k], ldb);
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    SIDE  ='L', N is even, TRANSR = 'C', UPLO = 'U', */
 | |
| /*                    and TRANS = 'C' */
 | |
| 
 | |
| 			ztrsm_("L", "L", "C", diag, &k, n, alpha, &a[k * k], &
 | |
| 				k, &b[k], ldb);
 | |
| 			z__1.r = -1., z__1.i = 0.;
 | |
| 			zgemm_("C", "N", &k, n, &k, &z__1, a, &k, &b[k], ldb, 
 | |
| 				alpha, &b[b_offset], ldb);
 | |
| 			ztrsm_("L", "U", "N", diag, &k, n, &c_b1, &a[k * (k + 
 | |
| 				1)], &k, &b[b_offset], ldb);
 | |
| 
 | |
| 		    }
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 	    }
 | |
| 
 | |
| 	}
 | |
| 
 | |
|     } else {
 | |
| 
 | |
| /*        SIDE = 'R' */
 | |
| 
 | |
| /*        A is N-by-N. */
 | |
| /*        If N is odd, set NISODD = .TRUE., and N1 and N2. */
 | |
| /*        If N is even, NISODD = .FALSE., and K. */
 | |
| 
 | |
| 	if (*n % 2 == 0) {
 | |
| 	    nisodd = FALSE_;
 | |
| 	    k = *n / 2;
 | |
| 	} else {
 | |
| 	    nisodd = TRUE_;
 | |
| 	    if (lower) {
 | |
| 		n2 = *n / 2;
 | |
| 		n1 = *n - n2;
 | |
| 	    } else {
 | |
| 		n1 = *n / 2;
 | |
| 		n2 = *n - n1;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	if (nisodd) {
 | |
| 
 | |
| /*           SIDE = 'R' and N is odd */
 | |
| 
 | |
| 	    if (normaltransr) {
 | |
| 
 | |
| /*              SIDE = 'R', N is odd, and TRANSR = 'N' */
 | |
| 
 | |
| 		if (lower) {
 | |
| 
 | |
| /*                 SIDE  ='R', N is odd, TRANSR = 'N', and UPLO = 'L' */
 | |
| 
 | |
| 		    if (notrans) {
 | |
| 
 | |
| /*                    SIDE  ='R', N is odd, TRANSR = 'N', UPLO = 'L', and */
 | |
| /*                    TRANS = 'N' */
 | |
| 
 | |
| 			ztrsm_("R", "U", "C", diag, m, &n2, alpha, &a[*n], n, 
 | |
| 				&b[n1 * b_dim1], ldb);
 | |
| 			z__1.r = -1., z__1.i = 0.;
 | |
| 			zgemm_("N", "N", m, &n1, &n2, &z__1, &b[n1 * b_dim1], 
 | |
| 				ldb, &a[n1], n, alpha, b, ldb);
 | |
| 			ztrsm_("R", "L", "N", diag, m, &n1, &c_b1, a, n, b, 
 | |
| 				ldb);
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    SIDE  ='R', N is odd, TRANSR = 'N', UPLO = 'L', and */
 | |
| /*                    TRANS = 'C' */
 | |
| 
 | |
| 			ztrsm_("R", "L", "C", diag, m, &n1, alpha, a, n, b, 
 | |
| 				ldb);
 | |
| 			z__1.r = -1., z__1.i = 0.;
 | |
| 			zgemm_("N", "C", m, &n2, &n1, &z__1, b, ldb, &a[n1], 
 | |
| 				n, alpha, &b[n1 * b_dim1], ldb);
 | |
| 			ztrsm_("R", "U", "N", diag, m, &n2, &c_b1, &a[*n], n, 
 | |
| 				&b[n1 * b_dim1], ldb);
 | |
| 
 | |
| 		    }
 | |
| 
 | |
| 		} else {
 | |
| 
 | |
| /*                 SIDE  ='R', N is odd, TRANSR = 'N', and UPLO = 'U' */
 | |
| 
 | |
| 		    if (notrans) {
 | |
| 
 | |
| /*                    SIDE  ='R', N is odd, TRANSR = 'N', UPLO = 'U', and */
 | |
| /*                    TRANS = 'N' */
 | |
| 
 | |
| 			ztrsm_("R", "L", "C", diag, m, &n1, alpha, &a[n2], n, 
 | |
| 				b, ldb);
 | |
| 			z__1.r = -1., z__1.i = 0.;
 | |
| 			zgemm_("N", "N", m, &n2, &n1, &z__1, b, ldb, a, n, 
 | |
| 				alpha, &b[n1 * b_dim1], ldb);
 | |
| 			ztrsm_("R", "U", "N", diag, m, &n2, &c_b1, &a[n1], n, 
 | |
| 				&b[n1 * b_dim1], ldb);
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    SIDE  ='R', N is odd, TRANSR = 'N', UPLO = 'U', and */
 | |
| /*                    TRANS = 'C' */
 | |
| 
 | |
| 			ztrsm_("R", "U", "C", diag, m, &n2, alpha, &a[n1], n, 
 | |
| 				&b[n1 * b_dim1], ldb);
 | |
| 			z__1.r = -1., z__1.i = 0.;
 | |
| 			zgemm_("N", "C", m, &n1, &n2, &z__1, &b[n1 * b_dim1], 
 | |
| 				ldb, a, n, alpha, b, ldb);
 | |
| 			ztrsm_("R", "L", "N", diag, m, &n1, &c_b1, &a[n2], n, 
 | |
| 				b, ldb);
 | |
| 
 | |
| 		    }
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 	    } else {
 | |
| 
 | |
| /*              SIDE = 'R', N is odd, and TRANSR = 'C' */
 | |
| 
 | |
| 		if (lower) {
 | |
| 
 | |
| /*                 SIDE  ='R', N is odd, TRANSR = 'C', and UPLO = 'L' */
 | |
| 
 | |
| 		    if (notrans) {
 | |
| 
 | |
| /*                    SIDE  ='R', N is odd, TRANSR = 'C', UPLO = 'L', and */
 | |
| /*                    TRANS = 'N' */
 | |
| 
 | |
| 			ztrsm_("R", "L", "N", diag, m, &n2, alpha, &a[1], &n1,
 | |
| 				 &b[n1 * b_dim1], ldb);
 | |
| 			z__1.r = -1., z__1.i = 0.;
 | |
| 			zgemm_("N", "C", m, &n1, &n2, &z__1, &b[n1 * b_dim1], 
 | |
| 				ldb, &a[n1 * n1], &n1, alpha, b, ldb);
 | |
| 			ztrsm_("R", "U", "C", diag, m, &n1, &c_b1, a, &n1, b, 
 | |
| 				ldb);
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    SIDE  ='R', N is odd, TRANSR = 'C', UPLO = 'L', and */
 | |
| /*                    TRANS = 'C' */
 | |
| 
 | |
| 			ztrsm_("R", "U", "N", diag, m, &n1, alpha, a, &n1, b, 
 | |
| 				ldb);
 | |
| 			z__1.r = -1., z__1.i = 0.;
 | |
| 			zgemm_("N", "N", m, &n2, &n1, &z__1, b, ldb, &a[n1 * 
 | |
| 				n1], &n1, alpha, &b[n1 * b_dim1], ldb);
 | |
| 			ztrsm_("R", "L", "C", diag, m, &n2, &c_b1, &a[1], &n1,
 | |
| 				 &b[n1 * b_dim1], ldb);
 | |
| 
 | |
| 		    }
 | |
| 
 | |
| 		} else {
 | |
| 
 | |
| /*                 SIDE  ='R', N is odd, TRANSR = 'C', and UPLO = 'U' */
 | |
| 
 | |
| 		    if (notrans) {
 | |
| 
 | |
| /*                    SIDE  ='R', N is odd, TRANSR = 'C', UPLO = 'U', and */
 | |
| /*                    TRANS = 'N' */
 | |
| 
 | |
| 			ztrsm_("R", "U", "N", diag, m, &n1, alpha, &a[n2 * n2]
 | |
| 				, &n2, b, ldb);
 | |
| 			z__1.r = -1., z__1.i = 0.;
 | |
| 			zgemm_("N", "C", m, &n2, &n1, &z__1, b, ldb, a, &n2, 
 | |
| 				alpha, &b[n1 * b_dim1], ldb);
 | |
| 			ztrsm_("R", "L", "C", diag, m, &n2, &c_b1, &a[n1 * n2]
 | |
| 				, &n2, &b[n1 * b_dim1], ldb);
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    SIDE  ='R', N is odd, TRANSR = 'C', UPLO = 'U', and */
 | |
| /*                    TRANS = 'C' */
 | |
| 
 | |
| 			ztrsm_("R", "L", "N", diag, m, &n2, alpha, &a[n1 * n2]
 | |
| 				, &n2, &b[n1 * b_dim1], ldb);
 | |
| 			z__1.r = -1., z__1.i = 0.;
 | |
| 			zgemm_("N", "N", m, &n1, &n2, &z__1, &b[n1 * b_dim1], 
 | |
| 				ldb, a, &n2, alpha, b, ldb);
 | |
| 			ztrsm_("R", "U", "C", diag, m, &n1, &c_b1, &a[n2 * n2]
 | |
| 				, &n2, b, ldb);
 | |
| 
 | |
| 		    }
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 	    }
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| /*           SIDE = 'R' and N is even */
 | |
| 
 | |
| 	    if (normaltransr) {
 | |
| 
 | |
| /*              SIDE = 'R', N is even, and TRANSR = 'N' */
 | |
| 
 | |
| 		if (lower) {
 | |
| 
 | |
| /*                 SIDE  ='R', N is even, TRANSR = 'N', and UPLO = 'L' */
 | |
| 
 | |
| 		    if (notrans) {
 | |
| 
 | |
| /*                    SIDE  ='R', N is even, TRANSR = 'N', UPLO = 'L', */
 | |
| /*                    and TRANS = 'N' */
 | |
| 
 | |
| 			i__1 = *n + 1;
 | |
| 			ztrsm_("R", "U", "C", diag, m, &k, alpha, a, &i__1, &
 | |
| 				b[k * b_dim1], ldb);
 | |
| 			z__1.r = -1., z__1.i = 0.;
 | |
| 			i__1 = *n + 1;
 | |
| 			zgemm_("N", "N", m, &k, &k, &z__1, &b[k * b_dim1], 
 | |
| 				ldb, &a[k + 1], &i__1, alpha, b, ldb);
 | |
| 			i__1 = *n + 1;
 | |
| 			ztrsm_("R", "L", "N", diag, m, &k, &c_b1, &a[1], &
 | |
| 				i__1, b, ldb);
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    SIDE  ='R', N is even, TRANSR = 'N', UPLO = 'L', */
 | |
| /*                    and TRANS = 'C' */
 | |
| 
 | |
| 			i__1 = *n + 1;
 | |
| 			ztrsm_("R", "L", "C", diag, m, &k, alpha, &a[1], &
 | |
| 				i__1, b, ldb);
 | |
| 			z__1.r = -1., z__1.i = 0.;
 | |
| 			i__1 = *n + 1;
 | |
| 			zgemm_("N", "C", m, &k, &k, &z__1, b, ldb, &a[k + 1], 
 | |
| 				&i__1, alpha, &b[k * b_dim1], ldb);
 | |
| 			i__1 = *n + 1;
 | |
| 			ztrsm_("R", "U", "N", diag, m, &k, &c_b1, a, &i__1, &
 | |
| 				b[k * b_dim1], ldb);
 | |
| 
 | |
| 		    }
 | |
| 
 | |
| 		} else {
 | |
| 
 | |
| /*                 SIDE  ='R', N is even, TRANSR = 'N', and UPLO = 'U' */
 | |
| 
 | |
| 		    if (notrans) {
 | |
| 
 | |
| /*                    SIDE  ='R', N is even, TRANSR = 'N', UPLO = 'U', */
 | |
| /*                    and TRANS = 'N' */
 | |
| 
 | |
| 			i__1 = *n + 1;
 | |
| 			ztrsm_("R", "L", "C", diag, m, &k, alpha, &a[k + 1], &
 | |
| 				i__1, b, ldb);
 | |
| 			z__1.r = -1., z__1.i = 0.;
 | |
| 			i__1 = *n + 1;
 | |
| 			zgemm_("N", "N", m, &k, &k, &z__1, b, ldb, a, &i__1, 
 | |
| 				alpha, &b[k * b_dim1], ldb);
 | |
| 			i__1 = *n + 1;
 | |
| 			ztrsm_("R", "U", "N", diag, m, &k, &c_b1, &a[k], &
 | |
| 				i__1, &b[k * b_dim1], ldb);
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    SIDE  ='R', N is even, TRANSR = 'N', UPLO = 'U', */
 | |
| /*                    and TRANS = 'C' */
 | |
| 
 | |
| 			i__1 = *n + 1;
 | |
| 			ztrsm_("R", "U", "C", diag, m, &k, alpha, &a[k], &
 | |
| 				i__1, &b[k * b_dim1], ldb);
 | |
| 			z__1.r = -1., z__1.i = 0.;
 | |
| 			i__1 = *n + 1;
 | |
| 			zgemm_("N", "C", m, &k, &k, &z__1, &b[k * b_dim1], 
 | |
| 				ldb, a, &i__1, alpha, b, ldb);
 | |
| 			i__1 = *n + 1;
 | |
| 			ztrsm_("R", "L", "N", diag, m, &k, &c_b1, &a[k + 1], &
 | |
| 				i__1, b, ldb);
 | |
| 
 | |
| 		    }
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 	    } else {
 | |
| 
 | |
| /*              SIDE = 'R', N is even, and TRANSR = 'C' */
 | |
| 
 | |
| 		if (lower) {
 | |
| 
 | |
| /*                 SIDE  ='R', N is even, TRANSR = 'C', and UPLO = 'L' */
 | |
| 
 | |
| 		    if (notrans) {
 | |
| 
 | |
| /*                    SIDE  ='R', N is even, TRANSR = 'C', UPLO = 'L', */
 | |
| /*                    and TRANS = 'N' */
 | |
| 
 | |
| 			ztrsm_("R", "L", "N", diag, m, &k, alpha, a, &k, &b[k 
 | |
| 				* b_dim1], ldb);
 | |
| 			z__1.r = -1., z__1.i = 0.;
 | |
| 			zgemm_("N", "C", m, &k, &k, &z__1, &b[k * b_dim1], 
 | |
| 				ldb, &a[(k + 1) * k], &k, alpha, b, ldb);
 | |
| 			ztrsm_("R", "U", "C", diag, m, &k, &c_b1, &a[k], &k, 
 | |
| 				b, ldb);
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    SIDE  ='R', N is even, TRANSR = 'C', UPLO = 'L', */
 | |
| /*                    and TRANS = 'C' */
 | |
| 
 | |
| 			ztrsm_("R", "U", "N", diag, m, &k, alpha, &a[k], &k, 
 | |
| 				b, ldb);
 | |
| 			z__1.r = -1., z__1.i = 0.;
 | |
| 			zgemm_("N", "N", m, &k, &k, &z__1, b, ldb, &a[(k + 1) 
 | |
| 				* k], &k, alpha, &b[k * b_dim1], ldb);
 | |
| 			ztrsm_("R", "L", "C", diag, m, &k, &c_b1, a, &k, &b[k 
 | |
| 				* b_dim1], ldb);
 | |
| 
 | |
| 		    }
 | |
| 
 | |
| 		} else {
 | |
| 
 | |
| /*                 SIDE  ='R', N is even, TRANSR = 'C', and UPLO = 'U' */
 | |
| 
 | |
| 		    if (notrans) {
 | |
| 
 | |
| /*                    SIDE  ='R', N is even, TRANSR = 'C', UPLO = 'U', */
 | |
| /*                    and TRANS = 'N' */
 | |
| 
 | |
| 			ztrsm_("R", "U", "N", diag, m, &k, alpha, &a[(k + 1) *
 | |
| 				 k], &k, b, ldb);
 | |
| 			z__1.r = -1., z__1.i = 0.;
 | |
| 			zgemm_("N", "C", m, &k, &k, &z__1, b, ldb, a, &k, 
 | |
| 				alpha, &b[k * b_dim1], ldb);
 | |
| 			ztrsm_("R", "L", "C", diag, m, &k, &c_b1, &a[k * k], &
 | |
| 				k, &b[k * b_dim1], ldb);
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    SIDE  ='R', N is even, TRANSR = 'C', UPLO = 'U', */
 | |
| /*                    and TRANS = 'C' */
 | |
| 
 | |
| 			ztrsm_("R", "L", "N", diag, m, &k, alpha, &a[k * k], &
 | |
| 				k, &b[k * b_dim1], ldb);
 | |
| 			z__1.r = -1., z__1.i = 0.;
 | |
| 			zgemm_("N", "N", m, &k, &k, &z__1, &b[k * b_dim1], 
 | |
| 				ldb, a, &k, alpha, b, ldb);
 | |
| 			ztrsm_("R", "U", "C", diag, m, &k, &c_b1, &a[(k + 1) *
 | |
| 				 k], &k, b, ldb);
 | |
| 
 | |
| 		    }
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 	    }
 | |
| 
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of ZTFSM */
 | |
| 
 | |
| } /* ztfsm_ */
 | |
| 
 |