1295 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1295 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle_() continue;
 | |
| #define myceiling_(w) {ceil(w)}
 | |
| #define myhuge_(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static doublecomplex c_b1 = {1.,0.};
 | |
| static integer c__1 = 1;
 | |
| 
 | |
| /* > \brief \b ZSYTF2 computes the factorization of a real symmetric indefinite matrix, using the diagonal piv
 | |
| oting method (unblocked algorithm). */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download ZSYTF2 + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytf2.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytf2.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytf2.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE ZSYTF2( UPLO, N, A, LDA, IPIV, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          UPLO */
 | |
| /*       INTEGER            INFO, LDA, N */
 | |
| /*       INTEGER            IPIV( * ) */
 | |
| /*       COMPLEX*16         A( LDA, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > ZSYTF2 computes the factorization of a complex symmetric matrix A */
 | |
| /* > using the Bunch-Kaufman diagonal pivoting method: */
 | |
| /* > */
 | |
| /* >    A = U*D*U**T  or  A = L*D*L**T */
 | |
| /* > */
 | |
| /* > where U (or L) is a product of permutation and unit upper (lower) */
 | |
| /* > triangular matrices, U**T is the transpose of U, and D is symmetric and */
 | |
| /* > block diagonal with 1-by-1 and 2-by-2 diagonal blocks. */
 | |
| /* > */
 | |
| /* > This is the unblocked version of the algorithm, calling Level 2 BLAS. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] UPLO */
 | |
| /* > \verbatim */
 | |
| /* >          UPLO is CHARACTER*1 */
 | |
| /* >          Specifies whether the upper or lower triangular part of the */
 | |
| /* >          symmetric matrix A is stored: */
 | |
| /* >          = 'U':  Upper triangular */
 | |
| /* >          = 'L':  Lower triangular */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix A.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is COMPLEX*16 array, dimension (LDA,N) */
 | |
| /* >          On entry, the symmetric matrix A.  If UPLO = 'U', the leading */
 | |
| /* >          n-by-n upper triangular part of A contains the upper */
 | |
| /* >          triangular part of the matrix A, and the strictly lower */
 | |
| /* >          triangular part of A is not referenced.  If UPLO = 'L', the */
 | |
| /* >          leading n-by-n lower triangular part of A contains the lower */
 | |
| /* >          triangular part of the matrix A, and the strictly upper */
 | |
| /* >          triangular part of A is not referenced. */
 | |
| /* > */
 | |
| /* >          On exit, the block diagonal matrix D and the multipliers used */
 | |
| /* >          to obtain the factor U or L (see below for further details). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A.  LDA >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IPIV */
 | |
| /* > \verbatim */
 | |
| /* >          IPIV is INTEGER array, dimension (N) */
 | |
| /* >          Details of the interchanges and the block structure of D. */
 | |
| /* > */
 | |
| /* >          If UPLO = 'U': */
 | |
| /* >             If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
 | |
| /* >             interchanged and D(k,k) is a 1-by-1 diagonal block. */
 | |
| /* > */
 | |
| /* >             If IPIV(k) = IPIV(k-1) < 0, then rows and columns */
 | |
| /* >             k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
 | |
| /* >             is a 2-by-2 diagonal block. */
 | |
| /* > */
 | |
| /* >          If UPLO = 'L': */
 | |
| /* >             If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
 | |
| /* >             interchanged and D(k,k) is a 1-by-1 diagonal block. */
 | |
| /* > */
 | |
| /* >             If IPIV(k) = IPIV(k+1) < 0, then rows and columns */
 | |
| /* >             k+1 and -IPIV(k) were interchanged and D(k:k+1,k:k+1) */
 | |
| /* >             is a 2-by-2 diagonal block. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0: successful exit */
 | |
| /* >          < 0: if INFO = -k, the k-th argument had an illegal value */
 | |
| /* >          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization */
 | |
| /* >               has been completed, but the block diagonal matrix D is */
 | |
| /* >               exactly singular, and division by zero will occur if it */
 | |
| /* >               is used to solve a system of equations. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup complex16SYcomputational */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  If UPLO = 'U', then A = U*D*U**T, where */
 | |
| /* >     U = P(n)*U(n)* ... *P(k)U(k)* ..., */
 | |
| /* >  i.e., U is a product of terms P(k)*U(k), where k decreases from n to */
 | |
| /* >  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
 | |
| /* >  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as */
 | |
| /* >  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such */
 | |
| /* >  that if the diagonal block D(k) is of order s (s = 1 or 2), then */
 | |
| /* > */
 | |
| /* >             (   I    v    0   )   k-s */
 | |
| /* >     U(k) =  (   0    I    0   )   s */
 | |
| /* >             (   0    0    I   )   n-k */
 | |
| /* >                k-s   s   n-k */
 | |
| /* > */
 | |
| /* >  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). */
 | |
| /* >  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), */
 | |
| /* >  and A(k,k), and v overwrites A(1:k-2,k-1:k). */
 | |
| /* > */
 | |
| /* >  If UPLO = 'L', then A = L*D*L**T, where */
 | |
| /* >     L = P(1)*L(1)* ... *P(k)*L(k)* ..., */
 | |
| /* >  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to */
 | |
| /* >  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
 | |
| /* >  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as */
 | |
| /* >  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such */
 | |
| /* >  that if the diagonal block D(k) is of order s (s = 1 or 2), then */
 | |
| /* > */
 | |
| /* >             (   I    0     0   )  k-1 */
 | |
| /* >     L(k) =  (   0    I     0   )  s */
 | |
| /* >             (   0    v     I   )  n-k-s+1 */
 | |
| /* >                k-1   s  n-k-s+1 */
 | |
| /* > */
 | |
| /* >  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). */
 | |
| /* >  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), */
 | |
| /* >  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  09-29-06 - patch from */
 | |
| /* >    Bobby Cheng, MathWorks */
 | |
| /* > */
 | |
| /* >    Replace l.209 and l.377 */
 | |
| /* >         IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN */
 | |
| /* >    by */
 | |
| /* >         IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN */
 | |
| /* > */
 | |
| /* >  1-96 - Based on modifications by J. Lewis, Boeing Computer Services */
 | |
| /* >         Company */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void zsytf2_(char *uplo, integer *n, doublecomplex *a, 
 | |
| 	integer *lda, integer *ipiv, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6;
 | |
|     doublereal d__1, d__2, d__3, d__4;
 | |
|     doublecomplex z__1, z__2, z__3, z__4;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer imax, jmax;
 | |
|     extern /* Subroutine */ void zsyr_(char *, integer *, doublecomplex *, 
 | |
| 	    doublecomplex *, integer *, doublecomplex *, integer *);
 | |
|     integer i__, j, k;
 | |
|     doublecomplex t;
 | |
|     doublereal alpha;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     extern /* Subroutine */ void zscal_(integer *, doublecomplex *, 
 | |
| 	    doublecomplex *, integer *);
 | |
|     integer kstep;
 | |
|     logical upper;
 | |
|     doublecomplex r1;
 | |
|     extern /* Subroutine */ void zswap_(integer *, doublecomplex *, integer *, 
 | |
| 	    doublecomplex *, integer *);
 | |
|     doublecomplex d11, d12, d21, d22;
 | |
|     integer kk, kp;
 | |
|     doublereal absakk;
 | |
|     doublecomplex wk;
 | |
|     extern logical disnan_(doublereal *);
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     doublereal colmax;
 | |
|     extern integer izamax_(integer *, doublecomplex *, integer *);
 | |
|     doublereal rowmax;
 | |
|     doublecomplex wkm1, wkp1;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     --ipiv;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     upper = lsame_(uplo, "U");
 | |
|     if (! upper && ! lsame_(uplo, "L")) {
 | |
| 	*info = -1;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -2;
 | |
|     } else if (*lda < f2cmax(1,*n)) {
 | |
| 	*info = -4;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("ZSYTF2", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Initialize ALPHA for use in choosing pivot block size. */
 | |
| 
 | |
|     alpha = (sqrt(17.) + 1.) / 8.;
 | |
| 
 | |
|     if (upper) {
 | |
| 
 | |
| /*        Factorize A as U*D*U**T using the upper triangle of A */
 | |
| 
 | |
| /*        K is the main loop index, decreasing from N to 1 in steps of */
 | |
| /*        1 or 2 */
 | |
| 
 | |
| 	k = *n;
 | |
| L10:
 | |
| 
 | |
| /*        If K < 1, exit from loop */
 | |
| 
 | |
| 	if (k < 1) {
 | |
| 	    goto L70;
 | |
| 	}
 | |
| 	kstep = 1;
 | |
| 
 | |
| /*        Determine rows and columns to be interchanged and whether */
 | |
| /*        a 1-by-1 or 2-by-2 pivot block will be used */
 | |
| 
 | |
| 	i__1 = k + k * a_dim1;
 | |
| 	absakk = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[k + k * 
 | |
| 		a_dim1]), abs(d__2));
 | |
| 
 | |
| /*        IMAX is the row-index of the largest off-diagonal element in */
 | |
| /*        column K, and COLMAX is its absolute value. */
 | |
| /*        Determine both COLMAX and IMAX. */
 | |
| 
 | |
| 	if (k > 1) {
 | |
| 	    i__1 = k - 1;
 | |
| 	    imax = izamax_(&i__1, &a[k * a_dim1 + 1], &c__1);
 | |
| 	    i__1 = imax + k * a_dim1;
 | |
| 	    colmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[imax + 
 | |
| 		    k * a_dim1]), abs(d__2));
 | |
| 	} else {
 | |
| 	    colmax = 0.;
 | |
| 	}
 | |
| 
 | |
| 	if (f2cmax(absakk,colmax) == 0. || disnan_(&absakk)) {
 | |
| 
 | |
| /*           Column K is zero or underflow, or contains a NaN: */
 | |
| /*           set INFO and continue */
 | |
| 
 | |
| 	    if (*info == 0) {
 | |
| 		*info = k;
 | |
| 	    }
 | |
| 	    kp = k;
 | |
| 	} else {
 | |
| 	    if (absakk >= alpha * colmax) {
 | |
| 
 | |
| /*              no interchange, use 1-by-1 pivot block */
 | |
| 
 | |
| 		kp = k;
 | |
| 	    } else {
 | |
| 
 | |
| /*              JMAX is the column-index of the largest off-diagonal */
 | |
| /*              element in row IMAX, and ROWMAX is its absolute value */
 | |
| 
 | |
| 		i__1 = k - imax;
 | |
| 		jmax = imax + izamax_(&i__1, &a[imax + (imax + 1) * a_dim1], 
 | |
| 			lda);
 | |
| 		i__1 = imax + jmax * a_dim1;
 | |
| 		rowmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[
 | |
| 			imax + jmax * a_dim1]), abs(d__2));
 | |
| 		if (imax > 1) {
 | |
| 		    i__1 = imax - 1;
 | |
| 		    jmax = izamax_(&i__1, &a[imax * a_dim1 + 1], &c__1);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = jmax + imax * a_dim1;
 | |
| 		    d__3 = rowmax, d__4 = (d__1 = a[i__1].r, abs(d__1)) + (
 | |
| 			    d__2 = d_imag(&a[jmax + imax * a_dim1]), abs(d__2)
 | |
| 			    );
 | |
| 		    rowmax = f2cmax(d__3,d__4);
 | |
| 		}
 | |
| 
 | |
| 		if (absakk >= alpha * colmax * (colmax / rowmax)) {
 | |
| 
 | |
| /*                 no interchange, use 1-by-1 pivot block */
 | |
| 
 | |
| 		    kp = k;
 | |
| 		} else /* if(complicated condition) */ {
 | |
| 		    i__1 = imax + imax * a_dim1;
 | |
| 		    if ((d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[
 | |
| 			    imax + imax * a_dim1]), abs(d__2)) >= alpha * 
 | |
| 			    rowmax) {
 | |
| 
 | |
| /*                 interchange rows and columns K and IMAX, use 1-by-1 */
 | |
| /*                 pivot block */
 | |
| 
 | |
| 			kp = imax;
 | |
| 		    } else {
 | |
| 
 | |
| /*                 interchange rows and columns K-1 and IMAX, use 2-by-2 */
 | |
| /*                 pivot block */
 | |
| 
 | |
| 			kp = imax;
 | |
| 			kstep = 2;
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	    kk = k - kstep + 1;
 | |
| 	    if (kp != kk) {
 | |
| 
 | |
| /*              Interchange rows and columns KK and KP in the leading */
 | |
| /*              submatrix A(1:k,1:k) */
 | |
| 
 | |
| 		i__1 = kp - 1;
 | |
| 		zswap_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1 + 1],
 | |
| 			 &c__1);
 | |
| 		i__1 = kk - kp - 1;
 | |
| 		zswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (kp + 
 | |
| 			1) * a_dim1], lda);
 | |
| 		i__1 = kk + kk * a_dim1;
 | |
| 		t.r = a[i__1].r, t.i = a[i__1].i;
 | |
| 		i__1 = kk + kk * a_dim1;
 | |
| 		i__2 = kp + kp * a_dim1;
 | |
| 		a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
 | |
| 		i__1 = kp + kp * a_dim1;
 | |
| 		a[i__1].r = t.r, a[i__1].i = t.i;
 | |
| 		if (kstep == 2) {
 | |
| 		    i__1 = k - 1 + k * a_dim1;
 | |
| 		    t.r = a[i__1].r, t.i = a[i__1].i;
 | |
| 		    i__1 = k - 1 + k * a_dim1;
 | |
| 		    i__2 = kp + k * a_dim1;
 | |
| 		    a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
 | |
| 		    i__1 = kp + k * a_dim1;
 | |
| 		    a[i__1].r = t.r, a[i__1].i = t.i;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           Update the leading submatrix */
 | |
| 
 | |
| 	    if (kstep == 1) {
 | |
| 
 | |
| /*              1-by-1 pivot block D(k): column k now holds */
 | |
| 
 | |
| /*              W(k) = U(k)*D(k) */
 | |
| 
 | |
| /*              where U(k) is the k-th column of U */
 | |
| 
 | |
| /*              Perform a rank-1 update of A(1:k-1,1:k-1) as */
 | |
| 
 | |
| /*              A := A - U(k)*D(k)*U(k)**T = A - W(k)*1/D(k)*W(k)**T */
 | |
| 
 | |
| 		z_div(&z__1, &c_b1, &a[k + k * a_dim1]);
 | |
| 		r1.r = z__1.r, r1.i = z__1.i;
 | |
| 		i__1 = k - 1;
 | |
| 		z__1.r = -r1.r, z__1.i = -r1.i;
 | |
| 		zsyr_(uplo, &i__1, &z__1, &a[k * a_dim1 + 1], &c__1, &a[
 | |
| 			a_offset], lda);
 | |
| 
 | |
| /*              Store U(k) in column k */
 | |
| 
 | |
| 		i__1 = k - 1;
 | |
| 		zscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
 | |
| 	    } else {
 | |
| 
 | |
| /*              2-by-2 pivot block D(k): columns k and k-1 now hold */
 | |
| 
 | |
| /*              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
 | |
| 
 | |
| /*              where U(k) and U(k-1) are the k-th and (k-1)-th columns */
 | |
| /*              of U */
 | |
| 
 | |
| /*              Perform a rank-2 update of A(1:k-2,1:k-2) as */
 | |
| 
 | |
| /*              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T */
 | |
| /*                 = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**T */
 | |
| 
 | |
| 		if (k > 2) {
 | |
| 
 | |
| 		    i__1 = k - 1 + k * a_dim1;
 | |
| 		    d12.r = a[i__1].r, d12.i = a[i__1].i;
 | |
| 		    z_div(&z__1, &a[k - 1 + (k - 1) * a_dim1], &d12);
 | |
| 		    d22.r = z__1.r, d22.i = z__1.i;
 | |
| 		    z_div(&z__1, &a[k + k * a_dim1], &d12);
 | |
| 		    d11.r = z__1.r, d11.i = z__1.i;
 | |
| 		    z__3.r = d11.r * d22.r - d11.i * d22.i, z__3.i = d11.r * 
 | |
| 			    d22.i + d11.i * d22.r;
 | |
| 		    z__2.r = z__3.r - 1., z__2.i = z__3.i + 0.;
 | |
| 		    z_div(&z__1, &c_b1, &z__2);
 | |
| 		    t.r = z__1.r, t.i = z__1.i;
 | |
| 		    z_div(&z__1, &t, &d12);
 | |
| 		    d12.r = z__1.r, d12.i = z__1.i;
 | |
| 
 | |
| 		    for (j = k - 2; j >= 1; --j) {
 | |
| 			i__1 = j + (k - 1) * a_dim1;
 | |
| 			z__3.r = d11.r * a[i__1].r - d11.i * a[i__1].i, 
 | |
| 				z__3.i = d11.r * a[i__1].i + d11.i * a[i__1]
 | |
| 				.r;
 | |
| 			i__2 = j + k * a_dim1;
 | |
| 			z__2.r = z__3.r - a[i__2].r, z__2.i = z__3.i - a[i__2]
 | |
| 				.i;
 | |
| 			z__1.r = d12.r * z__2.r - d12.i * z__2.i, z__1.i = 
 | |
| 				d12.r * z__2.i + d12.i * z__2.r;
 | |
| 			wkm1.r = z__1.r, wkm1.i = z__1.i;
 | |
| 			i__1 = j + k * a_dim1;
 | |
| 			z__3.r = d22.r * a[i__1].r - d22.i * a[i__1].i, 
 | |
| 				z__3.i = d22.r * a[i__1].i + d22.i * a[i__1]
 | |
| 				.r;
 | |
| 			i__2 = j + (k - 1) * a_dim1;
 | |
| 			z__2.r = z__3.r - a[i__2].r, z__2.i = z__3.i - a[i__2]
 | |
| 				.i;
 | |
| 			z__1.r = d12.r * z__2.r - d12.i * z__2.i, z__1.i = 
 | |
| 				d12.r * z__2.i + d12.i * z__2.r;
 | |
| 			wk.r = z__1.r, wk.i = z__1.i;
 | |
| 			for (i__ = j; i__ >= 1; --i__) {
 | |
| 			    i__1 = i__ + j * a_dim1;
 | |
| 			    i__2 = i__ + j * a_dim1;
 | |
| 			    i__3 = i__ + k * a_dim1;
 | |
| 			    z__3.r = a[i__3].r * wk.r - a[i__3].i * wk.i, 
 | |
| 				    z__3.i = a[i__3].r * wk.i + a[i__3].i * 
 | |
| 				    wk.r;
 | |
| 			    z__2.r = a[i__2].r - z__3.r, z__2.i = a[i__2].i - 
 | |
| 				    z__3.i;
 | |
| 			    i__4 = i__ + (k - 1) * a_dim1;
 | |
| 			    z__4.r = a[i__4].r * wkm1.r - a[i__4].i * wkm1.i, 
 | |
| 				    z__4.i = a[i__4].r * wkm1.i + a[i__4].i * 
 | |
| 				    wkm1.r;
 | |
| 			    z__1.r = z__2.r - z__4.r, z__1.i = z__2.i - 
 | |
| 				    z__4.i;
 | |
| 			    a[i__1].r = z__1.r, a[i__1].i = z__1.i;
 | |
| /* L20: */
 | |
| 			}
 | |
| 			i__1 = j + k * a_dim1;
 | |
| 			a[i__1].r = wk.r, a[i__1].i = wk.i;
 | |
| 			i__1 = j + (k - 1) * a_dim1;
 | |
| 			a[i__1].r = wkm1.r, a[i__1].i = wkm1.i;
 | |
| /* L30: */
 | |
| 		    }
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        Store details of the interchanges in IPIV */
 | |
| 
 | |
| 	if (kstep == 1) {
 | |
| 	    ipiv[k] = kp;
 | |
| 	} else {
 | |
| 	    ipiv[k] = -kp;
 | |
| 	    ipiv[k - 1] = -kp;
 | |
| 	}
 | |
| 
 | |
| /*        Decrease K and return to the start of the main loop */
 | |
| 
 | |
| 	k -= kstep;
 | |
| 	goto L10;
 | |
| 
 | |
|     } else {
 | |
| 
 | |
| /*        Factorize A as L*D*L**T using the lower triangle of A */
 | |
| 
 | |
| /*        K is the main loop index, increasing from 1 to N in steps of */
 | |
| /*        1 or 2 */
 | |
| 
 | |
| 	k = 1;
 | |
| L40:
 | |
| 
 | |
| /*        If K > N, exit from loop */
 | |
| 
 | |
| 	if (k > *n) {
 | |
| 	    goto L70;
 | |
| 	}
 | |
| 	kstep = 1;
 | |
| 
 | |
| /*        Determine rows and columns to be interchanged and whether */
 | |
| /*        a 1-by-1 or 2-by-2 pivot block will be used */
 | |
| 
 | |
| 	i__1 = k + k * a_dim1;
 | |
| 	absakk = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[k + k * 
 | |
| 		a_dim1]), abs(d__2));
 | |
| 
 | |
| /*        IMAX is the row-index of the largest off-diagonal element in */
 | |
| /*        column K, and COLMAX is its absolute value. */
 | |
| /*        Determine both COLMAX and IMAX. */
 | |
| 
 | |
| 	if (k < *n) {
 | |
| 	    i__1 = *n - k;
 | |
| 	    imax = k + izamax_(&i__1, &a[k + 1 + k * a_dim1], &c__1);
 | |
| 	    i__1 = imax + k * a_dim1;
 | |
| 	    colmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[imax + 
 | |
| 		    k * a_dim1]), abs(d__2));
 | |
| 	} else {
 | |
| 	    colmax = 0.;
 | |
| 	}
 | |
| 
 | |
| 	if (f2cmax(absakk,colmax) == 0. || disnan_(&absakk)) {
 | |
| 
 | |
| /*           Column K is zero or underflow, or contains a NaN: */
 | |
| /*           set INFO and continue */
 | |
| 
 | |
| 	    if (*info == 0) {
 | |
| 		*info = k;
 | |
| 	    }
 | |
| 	    kp = k;
 | |
| 	} else {
 | |
| 	    if (absakk >= alpha * colmax) {
 | |
| 
 | |
| /*              no interchange, use 1-by-1 pivot block */
 | |
| 
 | |
| 		kp = k;
 | |
| 	    } else {
 | |
| 
 | |
| /*              JMAX is the column-index of the largest off-diagonal */
 | |
| /*              element in row IMAX, and ROWMAX is its absolute value */
 | |
| 
 | |
| 		i__1 = imax - k;
 | |
| 		jmax = k - 1 + izamax_(&i__1, &a[imax + k * a_dim1], lda);
 | |
| 		i__1 = imax + jmax * a_dim1;
 | |
| 		rowmax = (d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[
 | |
| 			imax + jmax * a_dim1]), abs(d__2));
 | |
| 		if (imax < *n) {
 | |
| 		    i__1 = *n - imax;
 | |
| 		    jmax = imax + izamax_(&i__1, &a[imax + 1 + imax * a_dim1],
 | |
| 			     &c__1);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = jmax + imax * a_dim1;
 | |
| 		    d__3 = rowmax, d__4 = (d__1 = a[i__1].r, abs(d__1)) + (
 | |
| 			    d__2 = d_imag(&a[jmax + imax * a_dim1]), abs(d__2)
 | |
| 			    );
 | |
| 		    rowmax = f2cmax(d__3,d__4);
 | |
| 		}
 | |
| 
 | |
| 		if (absakk >= alpha * colmax * (colmax / rowmax)) {
 | |
| 
 | |
| /*                 no interchange, use 1-by-1 pivot block */
 | |
| 
 | |
| 		    kp = k;
 | |
| 		} else /* if(complicated condition) */ {
 | |
| 		    i__1 = imax + imax * a_dim1;
 | |
| 		    if ((d__1 = a[i__1].r, abs(d__1)) + (d__2 = d_imag(&a[
 | |
| 			    imax + imax * a_dim1]), abs(d__2)) >= alpha * 
 | |
| 			    rowmax) {
 | |
| 
 | |
| /*                 interchange rows and columns K and IMAX, use 1-by-1 */
 | |
| /*                 pivot block */
 | |
| 
 | |
| 			kp = imax;
 | |
| 		    } else {
 | |
| 
 | |
| /*                 interchange rows and columns K+1 and IMAX, use 2-by-2 */
 | |
| /*                 pivot block */
 | |
| 
 | |
| 			kp = imax;
 | |
| 			kstep = 2;
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	    kk = k + kstep - 1;
 | |
| 	    if (kp != kk) {
 | |
| 
 | |
| /*              Interchange rows and columns KK and KP in the trailing */
 | |
| /*              submatrix A(k:n,k:n) */
 | |
| 
 | |
| 		if (kp < *n) {
 | |
| 		    i__1 = *n - kp;
 | |
| 		    zswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1 
 | |
| 			    + kp * a_dim1], &c__1);
 | |
| 		}
 | |
| 		i__1 = kp - kk - 1;
 | |
| 		zswap_(&i__1, &a[kk + 1 + kk * a_dim1], &c__1, &a[kp + (kk + 
 | |
| 			1) * a_dim1], lda);
 | |
| 		i__1 = kk + kk * a_dim1;
 | |
| 		t.r = a[i__1].r, t.i = a[i__1].i;
 | |
| 		i__1 = kk + kk * a_dim1;
 | |
| 		i__2 = kp + kp * a_dim1;
 | |
| 		a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
 | |
| 		i__1 = kp + kp * a_dim1;
 | |
| 		a[i__1].r = t.r, a[i__1].i = t.i;
 | |
| 		if (kstep == 2) {
 | |
| 		    i__1 = k + 1 + k * a_dim1;
 | |
| 		    t.r = a[i__1].r, t.i = a[i__1].i;
 | |
| 		    i__1 = k + 1 + k * a_dim1;
 | |
| 		    i__2 = kp + k * a_dim1;
 | |
| 		    a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
 | |
| 		    i__1 = kp + k * a_dim1;
 | |
| 		    a[i__1].r = t.r, a[i__1].i = t.i;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           Update the trailing submatrix */
 | |
| 
 | |
| 	    if (kstep == 1) {
 | |
| 
 | |
| /*              1-by-1 pivot block D(k): column k now holds */
 | |
| 
 | |
| /*              W(k) = L(k)*D(k) */
 | |
| 
 | |
| /*              where L(k) is the k-th column of L */
 | |
| 
 | |
| 		if (k < *n) {
 | |
| 
 | |
| /*                 Perform a rank-1 update of A(k+1:n,k+1:n) as */
 | |
| 
 | |
| /*                 A := A - L(k)*D(k)*L(k)**T = A - W(k)*(1/D(k))*W(k)**T */
 | |
| 
 | |
| 		    z_div(&z__1, &c_b1, &a[k + k * a_dim1]);
 | |
| 		    r1.r = z__1.r, r1.i = z__1.i;
 | |
| 		    i__1 = *n - k;
 | |
| 		    z__1.r = -r1.r, z__1.i = -r1.i;
 | |
| 		    zsyr_(uplo, &i__1, &z__1, &a[k + 1 + k * a_dim1], &c__1, &
 | |
| 			    a[k + 1 + (k + 1) * a_dim1], lda);
 | |
| 
 | |
| /*                 Store L(k) in column K */
 | |
| 
 | |
| 		    i__1 = *n - k;
 | |
| 		    zscal_(&i__1, &r1, &a[k + 1 + k * a_dim1], &c__1);
 | |
| 		}
 | |
| 	    } else {
 | |
| 
 | |
| /*              2-by-2 pivot block D(k) */
 | |
| 
 | |
| 		if (k < *n - 1) {
 | |
| 
 | |
| /*                 Perform a rank-2 update of A(k+2:n,k+2:n) as */
 | |
| 
 | |
| /*                 A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**T */
 | |
| /*                    = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**T */
 | |
| 
 | |
| /*                 where L(k) and L(k+1) are the k-th and (k+1)-th */
 | |
| /*                 columns of L */
 | |
| 
 | |
| 		    i__1 = k + 1 + k * a_dim1;
 | |
| 		    d21.r = a[i__1].r, d21.i = a[i__1].i;
 | |
| 		    z_div(&z__1, &a[k + 1 + (k + 1) * a_dim1], &d21);
 | |
| 		    d11.r = z__1.r, d11.i = z__1.i;
 | |
| 		    z_div(&z__1, &a[k + k * a_dim1], &d21);
 | |
| 		    d22.r = z__1.r, d22.i = z__1.i;
 | |
| 		    z__3.r = d11.r * d22.r - d11.i * d22.i, z__3.i = d11.r * 
 | |
| 			    d22.i + d11.i * d22.r;
 | |
| 		    z__2.r = z__3.r - 1., z__2.i = z__3.i + 0.;
 | |
| 		    z_div(&z__1, &c_b1, &z__2);
 | |
| 		    t.r = z__1.r, t.i = z__1.i;
 | |
| 		    z_div(&z__1, &t, &d21);
 | |
| 		    d21.r = z__1.r, d21.i = z__1.i;
 | |
| 
 | |
| 		    i__1 = *n;
 | |
| 		    for (j = k + 2; j <= i__1; ++j) {
 | |
| 			i__2 = j + k * a_dim1;
 | |
| 			z__3.r = d11.r * a[i__2].r - d11.i * a[i__2].i, 
 | |
| 				z__3.i = d11.r * a[i__2].i + d11.i * a[i__2]
 | |
| 				.r;
 | |
| 			i__3 = j + (k + 1) * a_dim1;
 | |
| 			z__2.r = z__3.r - a[i__3].r, z__2.i = z__3.i - a[i__3]
 | |
| 				.i;
 | |
| 			z__1.r = d21.r * z__2.r - d21.i * z__2.i, z__1.i = 
 | |
| 				d21.r * z__2.i + d21.i * z__2.r;
 | |
| 			wk.r = z__1.r, wk.i = z__1.i;
 | |
| 			i__2 = j + (k + 1) * a_dim1;
 | |
| 			z__3.r = d22.r * a[i__2].r - d22.i * a[i__2].i, 
 | |
| 				z__3.i = d22.r * a[i__2].i + d22.i * a[i__2]
 | |
| 				.r;
 | |
| 			i__3 = j + k * a_dim1;
 | |
| 			z__2.r = z__3.r - a[i__3].r, z__2.i = z__3.i - a[i__3]
 | |
| 				.i;
 | |
| 			z__1.r = d21.r * z__2.r - d21.i * z__2.i, z__1.i = 
 | |
| 				d21.r * z__2.i + d21.i * z__2.r;
 | |
| 			wkp1.r = z__1.r, wkp1.i = z__1.i;
 | |
| 			i__2 = *n;
 | |
| 			for (i__ = j; i__ <= i__2; ++i__) {
 | |
| 			    i__3 = i__ + j * a_dim1;
 | |
| 			    i__4 = i__ + j * a_dim1;
 | |
| 			    i__5 = i__ + k * a_dim1;
 | |
| 			    z__3.r = a[i__5].r * wk.r - a[i__5].i * wk.i, 
 | |
| 				    z__3.i = a[i__5].r * wk.i + a[i__5].i * 
 | |
| 				    wk.r;
 | |
| 			    z__2.r = a[i__4].r - z__3.r, z__2.i = a[i__4].i - 
 | |
| 				    z__3.i;
 | |
| 			    i__6 = i__ + (k + 1) * a_dim1;
 | |
| 			    z__4.r = a[i__6].r * wkp1.r - a[i__6].i * wkp1.i, 
 | |
| 				    z__4.i = a[i__6].r * wkp1.i + a[i__6].i * 
 | |
| 				    wkp1.r;
 | |
| 			    z__1.r = z__2.r - z__4.r, z__1.i = z__2.i - 
 | |
| 				    z__4.i;
 | |
| 			    a[i__3].r = z__1.r, a[i__3].i = z__1.i;
 | |
| /* L50: */
 | |
| 			}
 | |
| 			i__2 = j + k * a_dim1;
 | |
| 			a[i__2].r = wk.r, a[i__2].i = wk.i;
 | |
| 			i__2 = j + (k + 1) * a_dim1;
 | |
| 			a[i__2].r = wkp1.r, a[i__2].i = wkp1.i;
 | |
| /* L60: */
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        Store details of the interchanges in IPIV */
 | |
| 
 | |
| 	if (kstep == 1) {
 | |
| 	    ipiv[k] = kp;
 | |
| 	} else {
 | |
| 	    ipiv[k] = -kp;
 | |
| 	    ipiv[k + 1] = -kp;
 | |
| 	}
 | |
| 
 | |
| /*        Increase K and return to the start of the main loop */
 | |
| 
 | |
| 	k += kstep;
 | |
| 	goto L40;
 | |
| 
 | |
|     }
 | |
| 
 | |
| L70:
 | |
|     return;
 | |
| 
 | |
| /*     End of ZSYTF2 */
 | |
| 
 | |
| } /* zsytf2_ */
 | |
| 
 |