789 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			789 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZSTEMR
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZSTEMR + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zstemr.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zstemr.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zstemr.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
 | |
| *                          M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK,
 | |
| *                          IWORK, LIWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBZ, RANGE
 | |
| *       LOGICAL            TRYRAC
 | |
| *       INTEGER            IL, INFO, IU, LDZ, NZC, LIWORK, LWORK, M, N
 | |
| *       DOUBLE PRECISION VL, VU
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            ISUPPZ( * ), IWORK( * )
 | |
| *       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * )
 | |
| *       COMPLEX*16         Z( LDZ, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZSTEMR computes selected eigenvalues and, optionally, eigenvectors
 | |
| *> of a real symmetric tridiagonal matrix T. Any such unreduced matrix has
 | |
| *> a well defined set of pairwise different real eigenvalues, the corresponding
 | |
| *> real eigenvectors are pairwise orthogonal.
 | |
| *>
 | |
| *> The spectrum may be computed either completely or partially by specifying
 | |
| *> either an interval (VL,VU] or a range of indices IL:IU for the desired
 | |
| *> eigenvalues.
 | |
| *>
 | |
| *> Depending on the number of desired eigenvalues, these are computed either
 | |
| *> by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are
 | |
| *> computed by the use of various suitable L D L^T factorizations near clusters
 | |
| *> of close eigenvalues (referred to as RRRs, Relatively Robust
 | |
| *> Representations). An informal sketch of the algorithm follows.
 | |
| *>
 | |
| *> For each unreduced block (submatrix) of T,
 | |
| *>    (a) Compute T - sigma I  = L D L^T, so that L and D
 | |
| *>        define all the wanted eigenvalues to high relative accuracy.
 | |
| *>        This means that small relative changes in the entries of D and L
 | |
| *>        cause only small relative changes in the eigenvalues and
 | |
| *>        eigenvectors. The standard (unfactored) representation of the
 | |
| *>        tridiagonal matrix T does not have this property in general.
 | |
| *>    (b) Compute the eigenvalues to suitable accuracy.
 | |
| *>        If the eigenvectors are desired, the algorithm attains full
 | |
| *>        accuracy of the computed eigenvalues only right before
 | |
| *>        the corresponding vectors have to be computed, see steps c) and d).
 | |
| *>    (c) For each cluster of close eigenvalues, select a new
 | |
| *>        shift close to the cluster, find a new factorization, and refine
 | |
| *>        the shifted eigenvalues to suitable accuracy.
 | |
| *>    (d) For each eigenvalue with a large enough relative separation compute
 | |
| *>        the corresponding eigenvector by forming a rank revealing twisted
 | |
| *>        factorization. Go back to (c) for any clusters that remain.
 | |
| *>
 | |
| *> For more details, see:
 | |
| *> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
 | |
| *>   to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
 | |
| *>   Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
 | |
| *> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
 | |
| *>   Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
 | |
| *>   2004.  Also LAPACK Working Note 154.
 | |
| *> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
 | |
| *>   tridiagonal eigenvalue/eigenvector problem",
 | |
| *>   Computer Science Division Technical Report No. UCB/CSD-97-971,
 | |
| *>   UC Berkeley, May 1997.
 | |
| *>
 | |
| *> Further Details
 | |
| *> 1.ZSTEMR works only on machines which follow IEEE-754
 | |
| *> floating-point standard in their handling of infinities and NaNs.
 | |
| *> This permits the use of efficient inner loops avoiding a check for
 | |
| *> zero divisors.
 | |
| *>
 | |
| *> 2. LAPACK routines can be used to reduce a complex Hermitean matrix to
 | |
| *> real symmetric tridiagonal form.
 | |
| *>
 | |
| *> (Any complex Hermitean tridiagonal matrix has real values on its diagonal
 | |
| *> and potentially complex numbers on its off-diagonals. By applying a
 | |
| *> similarity transform with an appropriate diagonal matrix
 | |
| *> diag(1,e^{i \phy_1}, ... , e^{i \phy_{n-1}}), the complex Hermitean
 | |
| *> matrix can be transformed into a real symmetric matrix and complex
 | |
| *> arithmetic can be entirely avoided.)
 | |
| *>
 | |
| *> While the eigenvectors of the real symmetric tridiagonal matrix are real,
 | |
| *> the eigenvectors of original complex Hermitean matrix have complex entries
 | |
| *> in general.
 | |
| *> Since LAPACK drivers overwrite the matrix data with the eigenvectors,
 | |
| *> ZSTEMR accepts complex workspace to facilitate interoperability
 | |
| *> with ZUNMTR or ZUPMTR.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBZ
 | |
| *> \verbatim
 | |
| *>          JOBZ is CHARACTER*1
 | |
| *>          = 'N':  Compute eigenvalues only;
 | |
| *>          = 'V':  Compute eigenvalues and eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RANGE
 | |
| *> \verbatim
 | |
| *>          RANGE is CHARACTER*1
 | |
| *>          = 'A': all eigenvalues will be found.
 | |
| *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
 | |
| *>                 will be found.
 | |
| *>          = 'I': the IL-th through IU-th eigenvalues will be found.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension (N)
 | |
| *>          On entry, the N diagonal elements of the tridiagonal matrix
 | |
| *>          T. On exit, D is overwritten.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] E
 | |
| *> \verbatim
 | |
| *>          E is DOUBLE PRECISION array, dimension (N)
 | |
| *>          On entry, the (N-1) subdiagonal elements of the tridiagonal
 | |
| *>          matrix T in elements 1 to N-1 of E. E(N) need not be set on
 | |
| *>          input, but is used internally as workspace.
 | |
| *>          On exit, E is overwritten.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] VL
 | |
| *> \verbatim
 | |
| *>          VL is DOUBLE PRECISION
 | |
| *>
 | |
| *>          If RANGE='V', the lower bound of the interval to
 | |
| *>          be searched for eigenvalues. VL < VU.
 | |
| *>          Not referenced if RANGE = 'A' or 'I'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] VU
 | |
| *> \verbatim
 | |
| *>          VU is DOUBLE PRECISION
 | |
| *>
 | |
| *>          If RANGE='V', the upper bound of the interval to
 | |
| *>          be searched for eigenvalues. VL < VU.
 | |
| *>          Not referenced if RANGE = 'A' or 'I'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IL
 | |
| *> \verbatim
 | |
| *>          IL is INTEGER
 | |
| *>
 | |
| *>          If RANGE='I', the index of the
 | |
| *>          smallest eigenvalue to be returned.
 | |
| *>          1 <= IL <= IU <= N, if N > 0.
 | |
| *>          Not referenced if RANGE = 'A' or 'V'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IU
 | |
| *> \verbatim
 | |
| *>          IU is INTEGER
 | |
| *>
 | |
| *>          If RANGE='I', the index of the
 | |
| *>          largest eigenvalue to be returned.
 | |
| *>          1 <= IL <= IU <= N, if N > 0.
 | |
| *>          Not referenced if RANGE = 'A' or 'V'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The total number of eigenvalues found.  0 <= M <= N.
 | |
| *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] W
 | |
| *> \verbatim
 | |
| *>          W is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The first M elements contain the selected eigenvalues in
 | |
| *>          ascending order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Z
 | |
| *> \verbatim
 | |
| *>          Z is COMPLEX*16 array, dimension (LDZ, max(1,M) )
 | |
| *>          If JOBZ = 'V', and if INFO = 0, then the first M columns of Z
 | |
| *>          contain the orthonormal eigenvectors of the matrix T
 | |
| *>          corresponding to the selected eigenvalues, with the i-th
 | |
| *>          column of Z holding the eigenvector associated with W(i).
 | |
| *>          If JOBZ = 'N', then Z is not referenced.
 | |
| *>          Note: the user must ensure that at least max(1,M) columns are
 | |
| *>          supplied in the array Z; if RANGE = 'V', the exact value of M
 | |
| *>          is not known in advance and can be computed with a workspace
 | |
| *>          query by setting NZC = -1, see below.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>          The leading dimension of the array Z.  LDZ >= 1, and if
 | |
| *>          JOBZ = 'V', then LDZ >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NZC
 | |
| *> \verbatim
 | |
| *>          NZC is INTEGER
 | |
| *>          The number of eigenvectors to be held in the array Z.
 | |
| *>          If RANGE = 'A', then NZC >= max(1,N).
 | |
| *>          If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU].
 | |
| *>          If RANGE = 'I', then NZC >= IU-IL+1.
 | |
| *>          If NZC = -1, then a workspace query is assumed; the
 | |
| *>          routine calculates the number of columns of the array Z that
 | |
| *>          are needed to hold the eigenvectors.
 | |
| *>          This value is returned as the first entry of the Z array, and
 | |
| *>          no error message related to NZC is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ISUPPZ
 | |
| *> \verbatim
 | |
| *>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
 | |
| *>          The support of the eigenvectors in Z, i.e., the indices
 | |
| *>          indicating the nonzero elements in Z. The i-th computed eigenvector
 | |
| *>          is nonzero only in elements ISUPPZ( 2*i-1 ) through
 | |
| *>          ISUPPZ( 2*i ). This is relevant in the case when the matrix
 | |
| *>          is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] TRYRAC
 | |
| *> \verbatim
 | |
| *>          TRYRAC is LOGICAL
 | |
| *>          If TRYRAC = .TRUE., indicates that the code should check whether
 | |
| *>          the tridiagonal matrix defines its eigenvalues to high relative
 | |
| *>          accuracy.  If so, the code uses relative-accuracy preserving
 | |
| *>          algorithms that might be (a bit) slower depending on the matrix.
 | |
| *>          If the matrix does not define its eigenvalues to high relative
 | |
| *>          accuracy, the code can uses possibly faster algorithms.
 | |
| *>          If TRYRAC = .FALSE., the code is not required to guarantee
 | |
| *>          relatively accurate eigenvalues and can use the fastest possible
 | |
| *>          techniques.
 | |
| *>          On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix
 | |
| *>          does not define its eigenvalues to high relative accuracy.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (LWORK)
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal
 | |
| *>          (and minimal) LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK. LWORK >= max(1,18*N)
 | |
| *>          if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'.
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (LIWORK)
 | |
| *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LIWORK
 | |
| *> \verbatim
 | |
| *>          LIWORK is INTEGER
 | |
| *>          The dimension of the array IWORK.  LIWORK >= max(1,10*N)
 | |
| *>          if the eigenvectors are desired, and LIWORK >= max(1,8*N)
 | |
| *>          if only the eigenvalues are to be computed.
 | |
| *>          If LIWORK = -1, then a workspace query is assumed; the
 | |
| *>          routine only calculates the optimal size of the IWORK array,
 | |
| *>          returns this value as the first entry of the IWORK array, and
 | |
| *>          no error message related to LIWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          On exit, INFO
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  if INFO = 1X, internal error in DLARRE,
 | |
| *>                if INFO = 2X, internal error in ZLARRV.
 | |
| *>                Here, the digit X = ABS( IINFO ) < 10, where IINFO is
 | |
| *>                the nonzero error code returned by DLARRE or
 | |
| *>                ZLARRV, respectively.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complex16OTHERcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *> Beresford Parlett, University of California, Berkeley, USA \n
 | |
| *> Jim Demmel, University of California, Berkeley, USA \n
 | |
| *> Inderjit Dhillon, University of Texas, Austin, USA \n
 | |
| *> Osni Marques, LBNL/NERSC, USA \n
 | |
| *> Christof Voemel, University of California, Berkeley, USA \n
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZSTEMR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU,
 | |
|      $                   M, W, Z, LDZ, NZC, ISUPPZ, TRYRAC, WORK, LWORK,
 | |
|      $                   IWORK, LIWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBZ, RANGE
 | |
|       LOGICAL            TRYRAC
 | |
|       INTEGER            IL, INFO, IU, LDZ, NZC, LIWORK, LWORK, M, N
 | |
|       DOUBLE PRECISION VL, VU
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            ISUPPZ( * ), IWORK( * )
 | |
|       DOUBLE PRECISION   D( * ), E( * ), W( * ), WORK( * )
 | |
|       COMPLEX*16         Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE, FOUR, MINRGP
 | |
|       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0,
 | |
|      $                     FOUR = 4.0D0,
 | |
|      $                     MINRGP = 1.0D-3 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            ALLEIG, INDEIG, LQUERY, VALEIG, WANTZ, ZQUERY
 | |
|       INTEGER            I, IBEGIN, IEND, IFIRST, IIL, IINDBL, IINDW,
 | |
|      $                   IINDWK, IINFO, IINSPL, IIU, ILAST, IN, INDD,
 | |
|      $                   INDE2, INDERR, INDGP, INDGRS, INDWRK, ITMP,
 | |
|      $                   ITMP2, J, JBLK, JJ, LIWMIN, LWMIN, NSPLIT,
 | |
|      $                   NZCMIN, OFFSET, WBEGIN, WEND
 | |
|       DOUBLE PRECISION   BIGNUM, CS, EPS, PIVMIN, R1, R2, RMAX, RMIN,
 | |
|      $                   RTOL1, RTOL2, SAFMIN, SCALE, SMLNUM, SN,
 | |
|      $                   THRESH, TMP, TNRM, WL, WU
 | |
| *     ..
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       DOUBLE PRECISION   DLAMCH, DLANST
 | |
|       EXTERNAL           LSAME, DLAMCH, DLANST
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DCOPY, DLAE2, DLAEV2, DLARRC, DLARRE, DLARRJ,
 | |
|      $                   DLARRR, DLASRT, DSCAL, XERBLA, ZLARRV, ZSWAP
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN, SQRT
 | |
| 
 | |
| 
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       WANTZ = LSAME( JOBZ, 'V' )
 | |
|       ALLEIG = LSAME( RANGE, 'A' )
 | |
|       VALEIG = LSAME( RANGE, 'V' )
 | |
|       INDEIG = LSAME( RANGE, 'I' )
 | |
| *
 | |
|       LQUERY = ( ( LWORK.EQ.-1 ).OR.( LIWORK.EQ.-1 ) )
 | |
|       ZQUERY = ( NZC.EQ.-1 )
 | |
| 
 | |
| *     DSTEMR needs WORK of size 6*N, IWORK of size 3*N.
 | |
| *     In addition, DLARRE needs WORK of size 6*N, IWORK of size 5*N.
 | |
| *     Furthermore, ZLARRV needs WORK of size 12*N, IWORK of size 7*N.
 | |
|       IF( WANTZ ) THEN
 | |
|          LWMIN = 18*N
 | |
|          LIWMIN = 10*N
 | |
|       ELSE
 | |
| *        need less workspace if only the eigenvalues are wanted
 | |
|          LWMIN = 12*N
 | |
|          LIWMIN = 8*N
 | |
|       ENDIF
 | |
| 
 | |
|       WL = ZERO
 | |
|       WU = ZERO
 | |
|       IIL = 0
 | |
|       IIU = 0
 | |
|       NSPLIT = 0
 | |
| 
 | |
|       IF( VALEIG ) THEN
 | |
| *        We do not reference VL, VU in the cases RANGE = 'I','A'
 | |
| *        The interval (WL, WU] contains all the wanted eigenvalues.
 | |
| *        It is either given by the user or computed in DLARRE.
 | |
|          WL = VL
 | |
|          WU = VU
 | |
|       ELSEIF( INDEIG ) THEN
 | |
| *        We do not reference IL, IU in the cases RANGE = 'V','A'
 | |
|          IIL = IL
 | |
|          IIU = IU
 | |
|       ENDIF
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( VALEIG .AND. N.GT.0 .AND. WU.LE.WL ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( INDEIG .AND. ( IIL.LT.1 .OR. IIL.GT.N ) ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( INDEIG .AND. ( IIU.LT.IIL .OR. IIU.GT.N ) ) THEN
 | |
|          INFO = -9
 | |
|       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
 | |
|          INFO = -13
 | |
|       ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
 | |
|          INFO = -17
 | |
|       ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
 | |
|          INFO = -19
 | |
|       END IF
 | |
| *
 | |
| *     Get machine constants.
 | |
| *
 | |
|       SAFMIN = DLAMCH( 'Safe minimum' )
 | |
|       EPS = DLAMCH( 'Precision' )
 | |
|       SMLNUM = SAFMIN / EPS
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       RMIN = SQRT( SMLNUM )
 | |
|       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          WORK( 1 ) = LWMIN
 | |
|          IWORK( 1 ) = LIWMIN
 | |
| *
 | |
|          IF( WANTZ .AND. ALLEIG ) THEN
 | |
|             NZCMIN = N
 | |
|          ELSE IF( WANTZ .AND. VALEIG ) THEN
 | |
|             CALL DLARRC( 'T', N, VL, VU, D, E, SAFMIN,
 | |
|      $                            NZCMIN, ITMP, ITMP2, INFO )
 | |
|          ELSE IF( WANTZ .AND. INDEIG ) THEN
 | |
|             NZCMIN = IIU-IIL+1
 | |
|          ELSE
 | |
| *           WANTZ .EQ. FALSE.
 | |
|             NZCMIN = 0
 | |
|          ENDIF
 | |
|          IF( ZQUERY .AND. INFO.EQ.0 ) THEN
 | |
|             Z( 1,1 ) = NZCMIN
 | |
|          ELSE IF( NZC.LT.NZCMIN .AND. .NOT.ZQUERY ) THEN
 | |
|             INFO = -14
 | |
|          END IF
 | |
|       END IF
 | |
| 
 | |
|       IF( INFO.NE.0 ) THEN
 | |
| *
 | |
|          CALL XERBLA( 'ZSTEMR', -INFO )
 | |
| *
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY .OR. ZQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Handle N = 0, 1, and 2 cases immediately
 | |
| *
 | |
|       M = 0
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       IF( N.EQ.1 ) THEN
 | |
|          IF( ALLEIG .OR. INDEIG ) THEN
 | |
|             M = 1
 | |
|             W( 1 ) = D( 1 )
 | |
|          ELSE
 | |
|             IF( WL.LT.D( 1 ) .AND. WU.GE.D( 1 ) ) THEN
 | |
|                M = 1
 | |
|                W( 1 ) = D( 1 )
 | |
|             END IF
 | |
|          END IF
 | |
|          IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
 | |
|             Z( 1, 1 ) = ONE
 | |
|             ISUPPZ(1) = 1
 | |
|             ISUPPZ(2) = 1
 | |
|          END IF
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       IF( N.EQ.2 ) THEN
 | |
|          IF( .NOT.WANTZ ) THEN
 | |
|             CALL DLAE2( D(1), E(1), D(2), R1, R2 )
 | |
|          ELSE IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
 | |
|             CALL DLAEV2( D(1), E(1), D(2), R1, R2, CS, SN )
 | |
|          END IF
 | |
|          IF( ALLEIG.OR.
 | |
|      $      (VALEIG.AND.(R2.GT.WL).AND.
 | |
|      $                  (R2.LE.WU)).OR.
 | |
|      $      (INDEIG.AND.(IIL.EQ.1)) ) THEN
 | |
|             M = M+1
 | |
|             W( M ) = R2
 | |
|             IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
 | |
|                Z( 1, M ) = -SN
 | |
|                Z( 2, M ) = CS
 | |
| *              Note: At most one of SN and CS can be zero.
 | |
|                IF (SN.NE.ZERO) THEN
 | |
|                   IF (CS.NE.ZERO) THEN
 | |
|                      ISUPPZ(2*M-1) = 1
 | |
|                      ISUPPZ(2*M) = 2
 | |
|                   ELSE
 | |
|                      ISUPPZ(2*M-1) = 1
 | |
|                      ISUPPZ(2*M) = 1
 | |
|                   END IF
 | |
|                ELSE
 | |
|                   ISUPPZ(2*M-1) = 2
 | |
|                   ISUPPZ(2*M) = 2
 | |
|                END IF
 | |
|             ENDIF
 | |
|          ENDIF
 | |
|          IF( ALLEIG.OR.
 | |
|      $      (VALEIG.AND.(R1.GT.WL).AND.
 | |
|      $                  (R1.LE.WU)).OR.
 | |
|      $      (INDEIG.AND.(IIU.EQ.2)) ) THEN
 | |
|             M = M+1
 | |
|             W( M ) = R1
 | |
|             IF( WANTZ.AND.(.NOT.ZQUERY) ) THEN
 | |
|                Z( 1, M ) = CS
 | |
|                Z( 2, M ) = SN
 | |
| *              Note: At most one of SN and CS can be zero.
 | |
|                IF (SN.NE.ZERO) THEN
 | |
|                   IF (CS.NE.ZERO) THEN
 | |
|                      ISUPPZ(2*M-1) = 1
 | |
|                      ISUPPZ(2*M) = 2
 | |
|                   ELSE
 | |
|                      ISUPPZ(2*M-1) = 1
 | |
|                      ISUPPZ(2*M) = 1
 | |
|                   END IF
 | |
|                ELSE
 | |
|                   ISUPPZ(2*M-1) = 2
 | |
|                   ISUPPZ(2*M) = 2
 | |
|                END IF
 | |
|             ENDIF
 | |
|          ENDIF
 | |
|       ELSE
 | |
| 
 | |
| *        Continue with general N
 | |
| 
 | |
|          INDGRS = 1
 | |
|          INDERR = 2*N + 1
 | |
|          INDGP = 3*N + 1
 | |
|          INDD = 4*N + 1
 | |
|          INDE2 = 5*N + 1
 | |
|          INDWRK = 6*N + 1
 | |
| *
 | |
|          IINSPL = 1
 | |
|          IINDBL = N + 1
 | |
|          IINDW = 2*N + 1
 | |
|          IINDWK = 3*N + 1
 | |
| *
 | |
| *        Scale matrix to allowable range, if necessary.
 | |
| *        The allowable range is related to the PIVMIN parameter; see the
 | |
| *        comments in DLARRD.  The preference for scaling small values
 | |
| *        up is heuristic; we expect users' matrices not to be close to the
 | |
| *        RMAX threshold.
 | |
| *
 | |
|          SCALE = ONE
 | |
|          TNRM = DLANST( 'M', N, D, E )
 | |
|          IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
 | |
|             SCALE = RMIN / TNRM
 | |
|          ELSE IF( TNRM.GT.RMAX ) THEN
 | |
|             SCALE = RMAX / TNRM
 | |
|          END IF
 | |
|          IF( SCALE.NE.ONE ) THEN
 | |
|             CALL DSCAL( N, SCALE, D, 1 )
 | |
|             CALL DSCAL( N-1, SCALE, E, 1 )
 | |
|             TNRM = TNRM*SCALE
 | |
|             IF( VALEIG ) THEN
 | |
| *              If eigenvalues in interval have to be found,
 | |
| *              scale (WL, WU] accordingly
 | |
|                WL = WL*SCALE
 | |
|                WU = WU*SCALE
 | |
|             ENDIF
 | |
|          END IF
 | |
| *
 | |
| *        Compute the desired eigenvalues of the tridiagonal after splitting
 | |
| *        into smaller subblocks if the corresponding off-diagonal elements
 | |
| *        are small
 | |
| *        THRESH is the splitting parameter for DLARRE
 | |
| *        A negative THRESH forces the old splitting criterion based on the
 | |
| *        size of the off-diagonal. A positive THRESH switches to splitting
 | |
| *        which preserves relative accuracy.
 | |
| *
 | |
|          IF( TRYRAC ) THEN
 | |
| *           Test whether the matrix warrants the more expensive relative approach.
 | |
|             CALL DLARRR( N, D, E, IINFO )
 | |
|          ELSE
 | |
| *           The user does not care about relative accurately eigenvalues
 | |
|             IINFO = -1
 | |
|          ENDIF
 | |
| *        Set the splitting criterion
 | |
|          IF (IINFO.EQ.0) THEN
 | |
|             THRESH = EPS
 | |
|          ELSE
 | |
|             THRESH = -EPS
 | |
| *           relative accuracy is desired but T does not guarantee it
 | |
|             TRYRAC = .FALSE.
 | |
|          ENDIF
 | |
| *
 | |
|          IF( TRYRAC ) THEN
 | |
| *           Copy original diagonal, needed to guarantee relative accuracy
 | |
|             CALL DCOPY(N,D,1,WORK(INDD),1)
 | |
|          ENDIF
 | |
| *        Store the squares of the offdiagonal values of T
 | |
|          DO 5 J = 1, N-1
 | |
|             WORK( INDE2+J-1 ) = E(J)**2
 | |
|  5    CONTINUE
 | |
| 
 | |
| *        Set the tolerance parameters for bisection
 | |
|          IF( .NOT.WANTZ ) THEN
 | |
| *           DLARRE computes the eigenvalues to full precision.
 | |
|             RTOL1 = FOUR * EPS
 | |
|             RTOL2 = FOUR * EPS
 | |
|          ELSE
 | |
| *           DLARRE computes the eigenvalues to less than full precision.
 | |
| *           ZLARRV will refine the eigenvalue approximations, and we only
 | |
| *           need less accurate initial bisection in DLARRE.
 | |
| *           Note: these settings do only affect the subset case and DLARRE
 | |
|             RTOL1 = SQRT(EPS)
 | |
|             RTOL2 = MAX( SQRT(EPS)*5.0D-3, FOUR * EPS )
 | |
|          ENDIF
 | |
|          CALL DLARRE( RANGE, N, WL, WU, IIL, IIU, D, E,
 | |
|      $             WORK(INDE2), RTOL1, RTOL2, THRESH, NSPLIT,
 | |
|      $             IWORK( IINSPL ), M, W, WORK( INDERR ),
 | |
|      $             WORK( INDGP ), IWORK( IINDBL ),
 | |
|      $             IWORK( IINDW ), WORK( INDGRS ), PIVMIN,
 | |
|      $             WORK( INDWRK ), IWORK( IINDWK ), IINFO )
 | |
|          IF( IINFO.NE.0 ) THEN
 | |
|             INFO = 10 + ABS( IINFO )
 | |
|             RETURN
 | |
|          END IF
 | |
| *        Note that if RANGE .NE. 'V', DLARRE computes bounds on the desired
 | |
| *        part of the spectrum. All desired eigenvalues are contained in
 | |
| *        (WL,WU]
 | |
| 
 | |
| 
 | |
|          IF( WANTZ ) THEN
 | |
| *
 | |
| *           Compute the desired eigenvectors corresponding to the computed
 | |
| *           eigenvalues
 | |
| *
 | |
|             CALL ZLARRV( N, WL, WU, D, E,
 | |
|      $                PIVMIN, IWORK( IINSPL ), M,
 | |
|      $                1, M, MINRGP, RTOL1, RTOL2,
 | |
|      $                W, WORK( INDERR ), WORK( INDGP ), IWORK( IINDBL ),
 | |
|      $                IWORK( IINDW ), WORK( INDGRS ), Z, LDZ,
 | |
|      $                ISUPPZ, WORK( INDWRK ), IWORK( IINDWK ), IINFO )
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                INFO = 20 + ABS( IINFO )
 | |
|                RETURN
 | |
|             END IF
 | |
|          ELSE
 | |
| *           DLARRE computes eigenvalues of the (shifted) root representation
 | |
| *           ZLARRV returns the eigenvalues of the unshifted matrix.
 | |
| *           However, if the eigenvectors are not desired by the user, we need
 | |
| *           to apply the corresponding shifts from DLARRE to obtain the
 | |
| *           eigenvalues of the original matrix.
 | |
|             DO 20 J = 1, M
 | |
|                ITMP = IWORK( IINDBL+J-1 )
 | |
|                W( J ) = W( J ) + E( IWORK( IINSPL+ITMP-1 ) )
 | |
|  20      CONTINUE
 | |
|          END IF
 | |
| *
 | |
| 
 | |
|          IF ( TRYRAC ) THEN
 | |
| *           Refine computed eigenvalues so that they are relatively accurate
 | |
| *           with respect to the original matrix T.
 | |
|             IBEGIN = 1
 | |
|             WBEGIN = 1
 | |
|             DO 39  JBLK = 1, IWORK( IINDBL+M-1 )
 | |
|                IEND = IWORK( IINSPL+JBLK-1 )
 | |
|                IN = IEND - IBEGIN + 1
 | |
|                WEND = WBEGIN - 1
 | |
| *              check if any eigenvalues have to be refined in this block
 | |
|  36         CONTINUE
 | |
|                IF( WEND.LT.M ) THEN
 | |
|                   IF( IWORK( IINDBL+WEND ).EQ.JBLK ) THEN
 | |
|                      WEND = WEND + 1
 | |
|                      GO TO 36
 | |
|                   END IF
 | |
|                END IF
 | |
|                IF( WEND.LT.WBEGIN ) THEN
 | |
|                   IBEGIN = IEND + 1
 | |
|                   GO TO 39
 | |
|                END IF
 | |
| 
 | |
|                OFFSET = IWORK(IINDW+WBEGIN-1)-1
 | |
|                IFIRST = IWORK(IINDW+WBEGIN-1)
 | |
|                ILAST = IWORK(IINDW+WEND-1)
 | |
|                RTOL2 = FOUR * EPS
 | |
|                CALL DLARRJ( IN,
 | |
|      $                   WORK(INDD+IBEGIN-1), WORK(INDE2+IBEGIN-1),
 | |
|      $                   IFIRST, ILAST, RTOL2, OFFSET, W(WBEGIN),
 | |
|      $                   WORK( INDERR+WBEGIN-1 ),
 | |
|      $                   WORK( INDWRK ), IWORK( IINDWK ), PIVMIN,
 | |
|      $                   TNRM, IINFO )
 | |
|                IBEGIN = IEND + 1
 | |
|                WBEGIN = WEND + 1
 | |
|  39      CONTINUE
 | |
|          ENDIF
 | |
| *
 | |
| *        If matrix was scaled, then rescale eigenvalues appropriately.
 | |
| *
 | |
|          IF( SCALE.NE.ONE ) THEN
 | |
|             CALL DSCAL( M, ONE / SCALE, W, 1 )
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     If eigenvalues are not in increasing order, then sort them,
 | |
| *     possibly along with eigenvectors.
 | |
| *
 | |
|       IF( NSPLIT.GT.1 .OR. N.EQ.2 ) THEN
 | |
|          IF( .NOT. WANTZ ) THEN
 | |
|             CALL DLASRT( 'I', M, W, IINFO )
 | |
|             IF( IINFO.NE.0 ) THEN
 | |
|                INFO = 3
 | |
|                RETURN
 | |
|             END IF
 | |
|          ELSE
 | |
|             DO 60 J = 1, M - 1
 | |
|                I = 0
 | |
|                TMP = W( J )
 | |
|                DO 50 JJ = J + 1, M
 | |
|                   IF( W( JJ ).LT.TMP ) THEN
 | |
|                      I = JJ
 | |
|                      TMP = W( JJ )
 | |
|                   END IF
 | |
|  50            CONTINUE
 | |
|                IF( I.NE.0 ) THEN
 | |
|                   W( I ) = W( J )
 | |
|                   W( J ) = TMP
 | |
|                   IF( WANTZ ) THEN
 | |
|                      CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
 | |
|                      ITMP = ISUPPZ( 2*I-1 )
 | |
|                      ISUPPZ( 2*I-1 ) = ISUPPZ( 2*J-1 )
 | |
|                      ISUPPZ( 2*J-1 ) = ITMP
 | |
|                      ITMP = ISUPPZ( 2*I )
 | |
|                      ISUPPZ( 2*I ) = ISUPPZ( 2*J )
 | |
|                      ISUPPZ( 2*J ) = ITMP
 | |
|                   END IF
 | |
|                END IF
 | |
|  60         CONTINUE
 | |
|          END IF
 | |
|       ENDIF
 | |
| *
 | |
| *
 | |
|       WORK( 1 ) = LWMIN
 | |
|       IWORK( 1 ) = LIWMIN
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZSTEMR
 | |
| *
 | |
|       END
 |