1090 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1090 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle_() continue;
 | |
| #define myceiling_(w) {ceil(w)}
 | |
| #define myhuge_(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static doublecomplex c_b1 = {1.,0.};
 | |
| static integer c__1 = 1;
 | |
| static integer c_n1 = -1;
 | |
| static doublereal c_b32 = -1.;
 | |
| static doublereal c_b33 = 1.;
 | |
| 
 | |
| /* > \brief \b ZPSTRF computes the Cholesky factorization with complete pivoting of a complex Hermitian positi
 | |
| ve semidefinite matrix. */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download ZPSTRF + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpstrf.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpstrf.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpstrf.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE ZPSTRF( UPLO, N, A, LDA, PIV, RANK, TOL, WORK, INFO ) */
 | |
| 
 | |
| /*       DOUBLE PRECISION   TOL */
 | |
| /*       INTEGER            INFO, LDA, N, RANK */
 | |
| /*       CHARACTER          UPLO */
 | |
| /*       COMPLEX*16         A( LDA, * ) */
 | |
| /*       DOUBLE PRECISION   WORK( 2*N ) */
 | |
| /*       INTEGER            PIV( N ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > ZPSTRF computes the Cholesky factorization with complete */
 | |
| /* > pivoting of a complex Hermitian positive semidefinite matrix A. */
 | |
| /* > */
 | |
| /* > The factorization has the form */
 | |
| /* >    P**T * A * P = U**H * U ,  if UPLO = 'U', */
 | |
| /* >    P**T * A * P = L  * L**H,  if UPLO = 'L', */
 | |
| /* > where U is an upper triangular matrix and L is lower triangular, and */
 | |
| /* > P is stored as vector PIV. */
 | |
| /* > */
 | |
| /* > This algorithm does not attempt to check that A is positive */
 | |
| /* > semidefinite. This version of the algorithm calls level 3 BLAS. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] UPLO */
 | |
| /* > \verbatim */
 | |
| /* >          UPLO is CHARACTER*1 */
 | |
| /* >          Specifies whether the upper or lower triangular part of the */
 | |
| /* >          symmetric matrix A is stored. */
 | |
| /* >          = 'U':  Upper triangular */
 | |
| /* >          = 'L':  Lower triangular */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix A.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is COMPLEX*16 array, dimension (LDA,N) */
 | |
| /* >          On entry, the symmetric matrix A.  If UPLO = 'U', the leading */
 | |
| /* >          n by n upper triangular part of A contains the upper */
 | |
| /* >          triangular part of the matrix A, and the strictly lower */
 | |
| /* >          triangular part of A is not referenced.  If UPLO = 'L', the */
 | |
| /* >          leading n by n lower triangular part of A contains the lower */
 | |
| /* >          triangular part of the matrix A, and the strictly upper */
 | |
| /* >          triangular part of A is not referenced. */
 | |
| /* > */
 | |
| /* >          On exit, if INFO = 0, the factor U or L from the Cholesky */
 | |
| /* >          factorization as above. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A.  LDA >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] PIV */
 | |
| /* > \verbatim */
 | |
| /* >          PIV is INTEGER array, dimension (N) */
 | |
| /* >          PIV is such that the nonzero entries are P( PIV(K), K ) = 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RANK */
 | |
| /* > \verbatim */
 | |
| /* >          RANK is INTEGER */
 | |
| /* >          The rank of A given by the number of steps the algorithm */
 | |
| /* >          completed. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] TOL */
 | |
| /* > \verbatim */
 | |
| /* >          TOL is DOUBLE PRECISION */
 | |
| /* >          User defined tolerance. If TOL < 0, then N*U*MAX( A(K,K) ) */
 | |
| /* >          will be used. The algorithm terminates at the (K-1)st step */
 | |
| /* >          if the pivot <= TOL. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is DOUBLE PRECISION array, dimension (2*N) */
 | |
| /* >          Work space. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          < 0: If INFO = -K, the K-th argument had an illegal value, */
 | |
| /* >          = 0: algorithm completed successfully, and */
 | |
| /* >          > 0: the matrix A is either rank deficient with computed rank */
 | |
| /* >               as returned in RANK, or is not positive semidefinite. See */
 | |
| /* >               Section 7 of LAPACK Working Note #161 for further */
 | |
| /* >               information. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup complex16OTHERcomputational */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void zpstrf_(char *uplo, integer *n, doublecomplex *a, 
 | |
| 	integer *lda, integer *piv, integer *rank, doublereal *tol, 
 | |
| 	doublereal *work, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
 | |
|     doublereal d__1;
 | |
|     doublecomplex z__1, z__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     
 | |
|     integer i__, j, k;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     doublereal dtemp;
 | |
|     integer itemp;
 | |
|     extern /* Subroutine */ void zherk_(char *, char *, integer *, integer *, 
 | |
| 	    doublereal *, doublecomplex *, integer *, doublereal *, 
 | |
| 	    doublecomplex *, integer *), zgemv_(char *, 
 | |
| 	    integer *, integer *, doublecomplex *, doublecomplex *, integer *,
 | |
| 	     doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
 | |
| 	    integer *);
 | |
|     doublereal dstop;
 | |
|     logical upper;
 | |
|     doublecomplex ztemp;
 | |
|     extern /* Subroutine */ void zswap_(integer *, doublecomplex *, integer *, 
 | |
| 	    doublecomplex *, integer *);
 | |
|     integer jb, nb;
 | |
|     extern doublereal dlamch_(char *);
 | |
|     extern /* Subroutine */ void zpstf2_(char *, integer *, doublecomplex *, 
 | |
| 	    integer *, integer *, integer *, doublereal *, doublereal *, 
 | |
| 	    integer *);
 | |
|     extern logical disnan_(doublereal *);
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | |
| 	    integer *, integer *, ftnlen, ftnlen);
 | |
|     extern /* Subroutine */ void zdscal_(integer *, doublereal *, 
 | |
| 	    doublecomplex *, integer *), zlacgv_(integer *, doublecomplex *, 
 | |
| 	    integer *);
 | |
|     doublereal ajj;
 | |
|     integer pvt;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --work;
 | |
|     --piv;
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     upper = lsame_(uplo, "U");
 | |
|     if (! upper && ! lsame_(uplo, "L")) {
 | |
| 	*info = -1;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -2;
 | |
|     } else if (*lda < f2cmax(1,*n)) {
 | |
| 	*info = -4;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("ZPSTRF", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*n == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Get block size */
 | |
| 
 | |
|     nb = ilaenv_(&c__1, "ZPOTRF", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (
 | |
| 	    ftnlen)1);
 | |
|     if (nb <= 1 || nb >= *n) {
 | |
| 
 | |
| /*        Use unblocked code */
 | |
| 
 | |
| 	zpstf2_(uplo, n, &a[a_dim1 + 1], lda, &piv[1], rank, tol, &work[1], 
 | |
| 		info);
 | |
| 	goto L230;
 | |
| 
 | |
|     } else {
 | |
| 
 | |
| /*     Initialize PIV */
 | |
| 
 | |
| 	i__1 = *n;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    piv[i__] = i__;
 | |
| /* L100: */
 | |
| 	}
 | |
| 
 | |
| /*     Compute stopping value */
 | |
| 
 | |
| 	i__1 = *n;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    i__2 = i__ + i__ * a_dim1;
 | |
| 	    work[i__] = a[i__2].r;
 | |
| /* L110: */
 | |
| 	}
 | |
| 	pvt = mymaxloc_(&work[1], &c__1, n, &c__1);
 | |
| 	i__1 = pvt + pvt * a_dim1;
 | |
| 	ajj = a[i__1].r;
 | |
| 	if (ajj <= 0. || disnan_(&ajj)) {
 | |
| 	    *rank = 0;
 | |
| 	    *info = 1;
 | |
| 	    goto L230;
 | |
| 	}
 | |
| 
 | |
| /*     Compute stopping value if not supplied */
 | |
| 
 | |
| 	if (*tol < 0.) {
 | |
| 	    dstop = *n * dlamch_("Epsilon") * ajj;
 | |
| 	} else {
 | |
| 	    dstop = *tol;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	if (upper) {
 | |
| 
 | |
| /*           Compute the Cholesky factorization P**T * A * P = U**H * U */
 | |
| 
 | |
| 	    i__1 = *n;
 | |
| 	    i__2 = nb;
 | |
| 	    for (k = 1; i__2 < 0 ? k >= i__1 : k <= i__1; k += i__2) {
 | |
| 
 | |
| /*              Account for last block not being NB wide */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 		i__3 = nb, i__4 = *n - k + 1;
 | |
| 		jb = f2cmin(i__3,i__4);
 | |
| 
 | |
| /*              Set relevant part of first half of WORK to zero, */
 | |
| /*              holds dot products */
 | |
| 
 | |
| 		i__3 = *n;
 | |
| 		for (i__ = k; i__ <= i__3; ++i__) {
 | |
| 		    work[i__] = 0.;
 | |
| /* L120: */
 | |
| 		}
 | |
| 
 | |
| 		i__3 = k + jb - 1;
 | |
| 		for (j = k; j <= i__3; ++j) {
 | |
| 
 | |
| /*              Find pivot, test for exit, else swap rows and columns */
 | |
| /*              Update dot products, compute possible pivots which are */
 | |
| /*              stored in the second half of WORK */
 | |
| 
 | |
| 		    i__4 = *n;
 | |
| 		    for (i__ = j; i__ <= i__4; ++i__) {
 | |
| 
 | |
| 			if (j > k) {
 | |
| 			    d_cnjg(&z__2, &a[j - 1 + i__ * a_dim1]);
 | |
| 			    i__5 = j - 1 + i__ * a_dim1;
 | |
| 			    z__1.r = z__2.r * a[i__5].r - z__2.i * a[i__5].i, 
 | |
| 				    z__1.i = z__2.r * a[i__5].i + z__2.i * a[
 | |
| 				    i__5].r;
 | |
| 			    work[i__] += z__1.r;
 | |
| 			}
 | |
| 			i__5 = i__ + i__ * a_dim1;
 | |
| 			work[*n + i__] = a[i__5].r - work[i__];
 | |
| 
 | |
| /* L130: */
 | |
| 		    }
 | |
| 
 | |
| 		    if (j > 1) {
 | |
| 			i__4 = *n + j;
 | |
| 			i__5 = *n << 1;
 | |
| 			itemp = mymaxloc_(&work[1], &i__4, &i__5, &c__1);
 | |
| 			pvt = itemp + j - 1;
 | |
| 			ajj = work[*n + pvt];
 | |
| 			if (ajj <= dstop || disnan_(&ajj)) {
 | |
| 			    i__4 = j + j * a_dim1;
 | |
| 			    a[i__4].r = ajj, a[i__4].i = 0.;
 | |
| 			    goto L220;
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		    if (j != pvt) {
 | |
| 
 | |
| /*                    Pivot OK, so can now swap pivot rows and columns */
 | |
| 
 | |
| 			i__4 = pvt + pvt * a_dim1;
 | |
| 			i__5 = j + j * a_dim1;
 | |
| 			a[i__4].r = a[i__5].r, a[i__4].i = a[i__5].i;
 | |
| 			i__4 = j - 1;
 | |
| 			zswap_(&i__4, &a[j * a_dim1 + 1], &c__1, &a[pvt * 
 | |
| 				a_dim1 + 1], &c__1);
 | |
| 			if (pvt < *n) {
 | |
| 			    i__4 = *n - pvt;
 | |
| 			    zswap_(&i__4, &a[j + (pvt + 1) * a_dim1], lda, &a[
 | |
| 				    pvt + (pvt + 1) * a_dim1], lda);
 | |
| 			}
 | |
| 			i__4 = pvt - 1;
 | |
| 			for (i__ = j + 1; i__ <= i__4; ++i__) {
 | |
| 			    d_cnjg(&z__1, &a[j + i__ * a_dim1]);
 | |
| 			    ztemp.r = z__1.r, ztemp.i = z__1.i;
 | |
| 			    i__5 = j + i__ * a_dim1;
 | |
| 			    d_cnjg(&z__1, &a[i__ + pvt * a_dim1]);
 | |
| 			    a[i__5].r = z__1.r, a[i__5].i = z__1.i;
 | |
| 			    i__5 = i__ + pvt * a_dim1;
 | |
| 			    a[i__5].r = ztemp.r, a[i__5].i = ztemp.i;
 | |
| /* L140: */
 | |
| 			}
 | |
| 			i__4 = j + pvt * a_dim1;
 | |
| 			d_cnjg(&z__1, &a[j + pvt * a_dim1]);
 | |
| 			a[i__4].r = z__1.r, a[i__4].i = z__1.i;
 | |
| 
 | |
| /*                    Swap dot products and PIV */
 | |
| 
 | |
| 			dtemp = work[j];
 | |
| 			work[j] = work[pvt];
 | |
| 			work[pvt] = dtemp;
 | |
| 			itemp = piv[pvt];
 | |
| 			piv[pvt] = piv[j];
 | |
| 			piv[j] = itemp;
 | |
| 		    }
 | |
| 
 | |
| 		    ajj = sqrt(ajj);
 | |
| 		    i__4 = j + j * a_dim1;
 | |
| 		    a[i__4].r = ajj, a[i__4].i = 0.;
 | |
| 
 | |
| /*                 Compute elements J+1:N of row J. */
 | |
| 
 | |
| 		    if (j < *n) {
 | |
| 			i__4 = j - 1;
 | |
| 			zlacgv_(&i__4, &a[j * a_dim1 + 1], &c__1);
 | |
| 			i__4 = j - k;
 | |
| 			i__5 = *n - j;
 | |
| 			z__1.r = -1., z__1.i = 0.;
 | |
| 			zgemv_("Trans", &i__4, &i__5, &z__1, &a[k + (j + 1) * 
 | |
| 				a_dim1], lda, &a[k + j * a_dim1], &c__1, &
 | |
| 				c_b1, &a[j + (j + 1) * a_dim1], lda);
 | |
| 			i__4 = j - 1;
 | |
| 			zlacgv_(&i__4, &a[j * a_dim1 + 1], &c__1);
 | |
| 			i__4 = *n - j;
 | |
| 			d__1 = 1. / ajj;
 | |
| 			zdscal_(&i__4, &d__1, &a[j + (j + 1) * a_dim1], lda);
 | |
| 		    }
 | |
| 
 | |
| /* L150: */
 | |
| 		}
 | |
| 
 | |
| /*              Update trailing matrix, J already incremented */
 | |
| 
 | |
| 		if (k + jb <= *n) {
 | |
| 		    i__3 = *n - j + 1;
 | |
| 		    zherk_("Upper", "Conj Trans", &i__3, &jb, &c_b32, &a[k + 
 | |
| 			    j * a_dim1], lda, &c_b33, &a[j + j * a_dim1], lda);
 | |
| 		}
 | |
| 
 | |
| /* L160: */
 | |
| 	    }
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| /*        Compute the Cholesky factorization P**T * A * P = L * L**H */
 | |
| 
 | |
| 	    i__2 = *n;
 | |
| 	    i__1 = nb;
 | |
| 	    for (k = 1; i__1 < 0 ? k >= i__2 : k <= i__2; k += i__1) {
 | |
| 
 | |
| /*              Account for last block not being NB wide */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 		i__3 = nb, i__4 = *n - k + 1;
 | |
| 		jb = f2cmin(i__3,i__4);
 | |
| 
 | |
| /*              Set relevant part of first half of WORK to zero, */
 | |
| /*              holds dot products */
 | |
| 
 | |
| 		i__3 = *n;
 | |
| 		for (i__ = k; i__ <= i__3; ++i__) {
 | |
| 		    work[i__] = 0.;
 | |
| /* L170: */
 | |
| 		}
 | |
| 
 | |
| 		i__3 = k + jb - 1;
 | |
| 		for (j = k; j <= i__3; ++j) {
 | |
| 
 | |
| /*              Find pivot, test for exit, else swap rows and columns */
 | |
| /*              Update dot products, compute possible pivots which are */
 | |
| /*              stored in the second half of WORK */
 | |
| 
 | |
| 		    i__4 = *n;
 | |
| 		    for (i__ = j; i__ <= i__4; ++i__) {
 | |
| 
 | |
| 			if (j > k) {
 | |
| 			    d_cnjg(&z__2, &a[i__ + (j - 1) * a_dim1]);
 | |
| 			    i__5 = i__ + (j - 1) * a_dim1;
 | |
| 			    z__1.r = z__2.r * a[i__5].r - z__2.i * a[i__5].i, 
 | |
| 				    z__1.i = z__2.r * a[i__5].i + z__2.i * a[
 | |
| 				    i__5].r;
 | |
| 			    work[i__] += z__1.r;
 | |
| 			}
 | |
| 			i__5 = i__ + i__ * a_dim1;
 | |
| 			work[*n + i__] = a[i__5].r - work[i__];
 | |
| 
 | |
| /* L180: */
 | |
| 		    }
 | |
| 
 | |
| 		    if (j > 1) {
 | |
| 			i__4 = *n + j;
 | |
| 			i__5 = *n << 1;
 | |
| 			itemp = mymaxloc_(&work[1], &i__4, &i__5, &c__1);
 | |
| 			pvt = itemp + j - 1;
 | |
| 			ajj = work[*n + pvt];
 | |
| 			if (ajj <= dstop || disnan_(&ajj)) {
 | |
| 			    i__4 = j + j * a_dim1;
 | |
| 			    a[i__4].r = ajj, a[i__4].i = 0.;
 | |
| 			    goto L220;
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		    if (j != pvt) {
 | |
| 
 | |
| /*                    Pivot OK, so can now swap pivot rows and columns */
 | |
| 
 | |
| 			i__4 = pvt + pvt * a_dim1;
 | |
| 			i__5 = j + j * a_dim1;
 | |
| 			a[i__4].r = a[i__5].r, a[i__4].i = a[i__5].i;
 | |
| 			i__4 = j - 1;
 | |
| 			zswap_(&i__4, &a[j + a_dim1], lda, &a[pvt + a_dim1], 
 | |
| 				lda);
 | |
| 			if (pvt < *n) {
 | |
| 			    i__4 = *n - pvt;
 | |
| 			    zswap_(&i__4, &a[pvt + 1 + j * a_dim1], &c__1, &a[
 | |
| 				    pvt + 1 + pvt * a_dim1], &c__1);
 | |
| 			}
 | |
| 			i__4 = pvt - 1;
 | |
| 			for (i__ = j + 1; i__ <= i__4; ++i__) {
 | |
| 			    d_cnjg(&z__1, &a[i__ + j * a_dim1]);
 | |
| 			    ztemp.r = z__1.r, ztemp.i = z__1.i;
 | |
| 			    i__5 = i__ + j * a_dim1;
 | |
| 			    d_cnjg(&z__1, &a[pvt + i__ * a_dim1]);
 | |
| 			    a[i__5].r = z__1.r, a[i__5].i = z__1.i;
 | |
| 			    i__5 = pvt + i__ * a_dim1;
 | |
| 			    a[i__5].r = ztemp.r, a[i__5].i = ztemp.i;
 | |
| /* L190: */
 | |
| 			}
 | |
| 			i__4 = pvt + j * a_dim1;
 | |
| 			d_cnjg(&z__1, &a[pvt + j * a_dim1]);
 | |
| 			a[i__4].r = z__1.r, a[i__4].i = z__1.i;
 | |
| 
 | |
| 
 | |
| /*                    Swap dot products and PIV */
 | |
| 
 | |
| 			dtemp = work[j];
 | |
| 			work[j] = work[pvt];
 | |
| 			work[pvt] = dtemp;
 | |
| 			itemp = piv[pvt];
 | |
| 			piv[pvt] = piv[j];
 | |
| 			piv[j] = itemp;
 | |
| 		    }
 | |
| 
 | |
| 		    ajj = sqrt(ajj);
 | |
| 		    i__4 = j + j * a_dim1;
 | |
| 		    a[i__4].r = ajj, a[i__4].i = 0.;
 | |
| 
 | |
| /*                 Compute elements J+1:N of column J. */
 | |
| 
 | |
| 		    if (j < *n) {
 | |
| 			i__4 = j - 1;
 | |
| 			zlacgv_(&i__4, &a[j + a_dim1], lda);
 | |
| 			i__4 = *n - j;
 | |
| 			i__5 = j - k;
 | |
| 			z__1.r = -1., z__1.i = 0.;
 | |
| 			zgemv_("No Trans", &i__4, &i__5, &z__1, &a[j + 1 + k *
 | |
| 				 a_dim1], lda, &a[j + k * a_dim1], lda, &c_b1,
 | |
| 				 &a[j + 1 + j * a_dim1], &c__1);
 | |
| 			i__4 = j - 1;
 | |
| 			zlacgv_(&i__4, &a[j + a_dim1], lda);
 | |
| 			i__4 = *n - j;
 | |
| 			d__1 = 1. / ajj;
 | |
| 			zdscal_(&i__4, &d__1, &a[j + 1 + j * a_dim1], &c__1);
 | |
| 		    }
 | |
| 
 | |
| /* L200: */
 | |
| 		}
 | |
| 
 | |
| /*              Update trailing matrix, J already incremented */
 | |
| 
 | |
| 		if (k + jb <= *n) {
 | |
| 		    i__3 = *n - j + 1;
 | |
| 		    zherk_("Lower", "No Trans", &i__3, &jb, &c_b32, &a[j + k *
 | |
| 			     a_dim1], lda, &c_b33, &a[j + j * a_dim1], lda);
 | |
| 		}
 | |
| 
 | |
| /* L210: */
 | |
| 	    }
 | |
| 
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Ran to completion, A has full rank */
 | |
| 
 | |
|     *rank = *n;
 | |
| 
 | |
|     goto L230;
 | |
| L220:
 | |
| 
 | |
| /*     Rank is the number of steps completed.  Set INFO = 1 to signal */
 | |
| /*     that the factorization cannot be used to solve a system. */
 | |
| 
 | |
|     *rank = j - 1;
 | |
|     *info = 1;
 | |
| 
 | |
| L230:
 | |
|     return;
 | |
| 
 | |
| /*     End of ZPSTRF */
 | |
| 
 | |
| } /* zpstrf_ */
 | |
| 
 |